Nuprl Lemma : csm-term-to-path

[G:j⊢]. ∀[A:{G ⊢ _}].
  ∀a:{G.𝕀 ⊢ _:(A)p}
    ∀[H:j⊢]. ∀[sigma:H j⟶ G].
      ((<>(a))sigma H ⊢ <>((a)sigma+) ∈ {H ⊢ _:(Path_(A)sigma ((a)sigma+)[0(𝕀)] ((a)sigma+)[1(𝕀)])})


Proof




Definitions occuring in Statement :  term-to-path: <>(a) path-type: (Path_A b) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g uimplies: supposing a squash: T prop: true: True interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s interval-type: 𝕀 csm+: tau+ csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-comp: F interval-1: 1(𝕀) term-to-path: <>(a) pathtype: Path(A) guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  paths-equal cubical_set_cumulativity-i-j csm-ap-type_wf cubical-type-cumulativity2 csm-ap-term_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf csm+_wf subtype_rel_self cube_set_map_wf csm-id-adjoin_wf csm-interval-type interval-0_wf interval-1_wf cubical-term_wf cubical-type_wf cubical_set_wf squash_wf true_wf csm-path-type csm-id-adjoin_wf-interval-0 subset-cubical-term2 sub_cubical_set_self csm_id_adjoin_fst_type_lemma csm-ap-id-type csm-id-adjoin_wf-interval-1 path-type_wf term-to-path_wf p-csm+-type equal_wf istype-universe cubical-pi_wf cubical-fun-as-cubical-pi iff_weakening_equal cubical-lambda_wf csm-cubical-lambda csm-ap-type-fst-adjoin csm-comp-type csm-cubical-pi
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache Error :memTop,  independent_isectElimination universeIsType inhabitedIsType equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement imageElimination natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].
    \mforall{}a:\{G.\mBbbI{}  \mvdash{}  \_:(A)p\}.  \mforall{}[H:j\mvdash{}].  \mforall{}[sigma:H  j{}\mrightarrow{}  G].    ((<>(a))sigma  =  H  \mvdash{}  <>((a)sigma+))



Date html generated: 2020_05_20-PM-03_18_30
Last ObjectModification: 2020_04_06-PM-06_36_37

Theory : cubical!type!theory


Home Index