Nuprl Lemma : csm-ap-type-fst-adjoin
∀[X:j⊢]. ∀[B:{X ⊢ _}]. ∀[s,u:Top].  (((B)p)(s;u) ~ (B)s)
Proof
Definitions occuring in Statement : 
csm-adjoin: (s;u)
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
Lemmas referenced : 
pscm-ap-type-fst-adjoin, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[B:\{X  \mvdash{}  \_\}].  \mforall{}[s,u:Top].    (((B)p)(s;u)  \msim{}  (B)s)
Date html generated:
2020_05_20-PM-01_57_27
Last ObjectModification:
2020_04_03-PM-08_31_30
Theory : cubical!type!theory
Home
Index