Nuprl Lemma : pscm-ap-type-fst-adjoin

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[B:{X ⊢ _}]. ∀[s,u:Top].  (((B)p)(s;u) (B)s)


Proof




Definitions occuring in Statement :  pscm-adjoin: (s;u) psc-fst: p pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] top: Top sqequal: t small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} pscm-ap-type: (AF)s psc-fst: p pscm-adjoin: (s;u) pscm-ap: (s)x pi1: fst(t) subtype_rel: A ⊆B
Lemmas referenced :  istype-top presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction sqequalHypSubstitution setElimination thin rename cut productElimination sqequalRule axiomSqEquality hypothesis because_Cache extract_by_obid universeIsType isectElimination hypothesisEquality instantiate applyEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[B:\{X  \mvdash{}  \_\}].  \mforall{}[s,u:Top].    (((B)p)(s;u)  \msim{}  (B)s)



Date html generated: 2020_05_20-PM-01_28_19
Last ObjectModification: 2020_04_02-PM-01_56_06

Theory : presheaf!models!of!type!theory


Home Index