Nuprl Lemma : csm-path_term
∀[psi,r,s,a,b,w:Top].  ((path_term(psi; w; a; b; r))s ~ path-term(((psi)p)s;(w)s;(a)s;(b)s;((r)p)s))
Proof
Definitions occuring in Statement : 
path_term: path_term(phi; w; a; b; r)
, 
path-term: path-term(phi;w;a;b;r)
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
path_term: path_term(phi; w; a; b; r)
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
csm-path-term, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache
Latex:
\mforall{}[psi,r,s,a,b,w:Top].    ((path\_term(psi;  w;  a;  b;  r))s  \msim{}  path-term(((psi)p)s;(w)s;(a)s;(b)s;((r)p)s))
Date html generated:
2018_05_23-AM-11_00_25
Last ObjectModification:
2018_05_20-PM-08_04_08
Theory : cubical!type!theory
Home
Index