Nuprl Lemma : face-zero-eq-1

[H:j⊢]. ∀[z:{H ⊢ _:𝕀}]. ∀[I:fset(ℕ)]. ∀[a:H(I)].  z(a) 0 ∈ 𝕀(a) supposing (z=0)(a) 1 ∈ Point(face_lattice(I))


Proof




Definitions occuring in Statement :  face-zero: (i=0) interval-type: 𝕀 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) face_lattice: face_lattice(I) I_cube: A(I) cubical_set: CubicalSet dM0: 0 fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a face-zero: (i=0) cubical-term-at: u(a) member: t ∈ T subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uiff: uiff(P;Q) face-type: 𝔽 face-presheaf: 𝔽 face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) DeMorgan-algebra: DeMorganAlgebra guard: {T} squash: T dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-1: 1 fset-singleton: {x} cons: [a b] fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) true: True
Lemmas referenced :  dM-to-FL-eq-1 dm-neg_wf names_wf names-deq_wf cubical-term-at_wf interval-type_wf subtype_rel_self lattice-point_wf free-DeMorgan-lattice_wf subtype_rel_set lattice-axioms_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf bounded-lattice-structure_wf bounded-lattice-structure-subtype face_lattice_wf lattice-structure_wf face-type_wf face-zero_wf lattice-1_wf I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_wf subtype_rel-equal dM_wf DeMorgan-algebra-axioms_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity squash_wf true_wf istype-universe dm-neg-neg cubical-type-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution sqequalRule cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis because_Cache applyEquality instantiate lambdaEquality_alt productEquality cumulativity isectEquality universeIsType independent_isectElimination productElimination equalityIstype setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry applyLambdaEquality hyp_replacement imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[z:\{H  \mvdash{}  \_:\mBbbI{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:H(I)].    z(a)  =  0  supposing  (z=0)(a)  =  1



Date html generated: 2020_05_20-PM-02_43_34
Last ObjectModification: 2020_04_04-PM-04_57_51

Theory : cubical!type!theory


Home Index