Nuprl Lemma : csm-glue-type

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}]. ∀[Z:j⊢].
[s:Z j⟶ Gamma].
  ((Glue [phi ⊢→ (T;w)] A)s Z ⊢ Glue [(phi)s ⊢→ ((T)s;(w)s)] (A)s ∈ {Z ⊢ _})


Proof




Definitions occuring in Statement :  glue-type: Glue [phi ⊢→ (T;w)] A context-subset: Gamma, phi face-type: 𝔽 cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} subtype_rel: A ⊆B all: x:A. B[x] glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho) csm-ap-term: (t)s cubical-term-at: u(a) cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q context-subset: Gamma, phi squash: T true: True glue-equations: glue-equations(Gamma;A;phi;T;w;I;rho;t;a) cubical-type: {X ⊢ _} subset-iota: iota csm-ap-type: (AF)s csm-ap: (s)x cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) glue-type: Glue [phi ⊢→ (T;w)] A glue-morph: glue-morph(Gamma;A;phi;T;w;I;rho;J;f;u)
Lemmas referenced :  csm-ap-term_wf face-type_wf csm-face-type context-subset_wf cube_set_map_wf istype-cubical-term cubical-fun_wf thin-context-subset cubical-type_wf cubical_set_wf context-subset-map cubical-type-equal2 csm-ap-type_wf glue-type_wf cubical-term-eqcd csm-cubical-fun I_cube_wf fset_wf nat_wf fl-eq_wf cubical-term-at_wf subtype_rel_self lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf csm-ap-type-at csm-ap_wf I_cube_pair_redex_lemma cubical-type-at_wf names-hom_wf squash_wf true_wf istype-universe cube-set-restriction_wf csm-ap-restriction iff_weakening_equal csm-ap-term-at cube_set_restriction_pair_lemma nh-comp_wf cubical-term-at-comp-is-1 csm-cubical-type-ap-morph cube-set-restriction-comp face-term-at-restriction-eq-1 cubical-type-ap-morph_wf istype-cubical-type-at cubical_type_at_pair_lemma cube-set-restriction-id nh-id_wf glue-cube_wf equal-glue-cube glue-morph_wf subtype_rel-equal btrue_wf iff_imp_equal_bool iff_functionality_wrt_iff istype-true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate independent_isectElimination applyEquality lambdaEquality_alt hyp_replacement dependent_functionElimination lambdaFormation_alt rename because_Cache unionElimination equalityElimination productElimination productEquality cumulativity isectEquality setElimination dependent_pairFormation_alt equalityIstype promote_hyp independent_functionElimination voidElimination dependent_set_memberEquality_alt setEquality functionEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed dependent_pairEquality_alt functionExtensionality functionIsType independent_pairFormation independent_pairEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[Z:j\mvdash{}].  \mforall{}[s:Z  j{}\mrightarrow{}  Gamma].
    ((Glue  [phi  \mvdash{}\mrightarrow{}  (T;w)]  A)s  =  Z  \mvdash{}  Glue  [(phi)s  \mvdash{}\mrightarrow{}  ((T)s;(w)s)]  (A)s)



Date html generated: 2020_05_20-PM-05_41_44
Last ObjectModification: 2020_04_21-PM-06_56_24

Theory : cubical!type!theory


Home Index