Nuprl Lemma : equal-glue-cube
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].
  ∀phi:{Gamma ⊢ _:𝔽}
    ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
      ∀I:fset(ℕ). ∀rho:Gamma(I). ∀u,v:glue-cube(Gamma;A;phi;T;w;I;rho).
        u = v ∈ glue-cube(Gamma;A;phi;T;w;I;rho) 
        supposing if (phi(rho)==1)
        then u = v ∈ T(rho)
        else u = v ∈ (J:fset(ℕ) ⟶ f:{f:J ⟶ I| phi(f(rho)) = 1 ∈ Point(face_lattice(J))}  ⟶ T(f(rho)) × A(rho))
        fi 
Proof
Definitions occuring in Statement : 
glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho), 
context-subset: Gamma, phi, 
face-type: 𝔽, 
cubical-fun: (A ⟶ B), 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
fl-eq: (x==y), 
face_lattice: face_lattice(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
equal: s = t ∈ T, 
lattice-1: 1, 
lattice-point: Point(l)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
glue-cube: glue-cube(Gamma;A;phi;T;w;I;rho), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True, 
context-subset: Gamma, phi
Lemmas referenced : 
fl-eq_wf, 
cubical-term-at_wf, 
face-type_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
lattice-1_wf, 
eqtt_to_assert, 
assert-fl-eq, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
glue-cube_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
istype-cubical-term, 
context-subset_wf, 
cubical-fun_wf, 
thin-context-subset, 
cubical-type_wf, 
cubical_set_wf, 
iff_imp_equal_bool, 
btrue_wf, 
iff_functionality_wrt_iff, 
true_wf, 
iff_weakening_equal, 
istype-true, 
names-hom_wf, 
cube-set-restriction_wf, 
istype-cubical-type-at, 
I_cube_pair_redex_lemma, 
glue-equations_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
universeIsType, 
setElimination, 
rename, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
independent_pairFormation, 
natural_numberEquality, 
productIsType, 
functionIsType, 
setIsType, 
Error :memTop, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    \mforall{}phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}
        \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].
            \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).  \mforall{}u,v:glue-cube(Gamma;A;phi;T;w;I;rho).
                u  =  v  supposing  if  (phi(rho)==1)  then  u  =  v  else  u  =  v  fi 
Date html generated:
2020_05_20-PM-05_39_07
Last ObjectModification:
2020_04_21-PM-05_17_32
Theory : cubical!type!theory
Home
Index