Nuprl Lemma : glue-equations_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
[I:fset(ℕ)]. ∀[rho:Gamma(I)]. ∀[t:J:fset(ℕ) ⟶ f:{f:J ⟶ I| phi(f(rho)) 1 ∈ Point(face_lattice(J))}  ⟶ T(f(rho))].
[a:A(rho)].
  (glue-equations(Gamma;A;phi;T;w;I;rho;t;a) ∈ ℙ)


Proof




Definitions occuring in Statement :  glue-equations: glue-equations(Gamma;A;phi;T;w;I;rho;t;a) context-subset: Gamma, phi face-type: 𝔽 cubical-fun: (A ⟶ B) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) cubical-type: {X ⊢ _} face_lattice: face_lattice(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: all: x:A. B[x] cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt context-subset: Gamma, phi bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a glue-equations: glue-equations(Gamma;A;phi;T;w;I;rho;t;a) implies:  Q squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a)
Lemmas referenced :  fset_wf nat_wf names-hom_wf equal_wf lattice-point_wf face_lattice_wf cubical-term-at_wf face-type_wf cube-set-restriction_wf lattice-1_wf subtype_rel_self I_cube_pair_redex_lemma subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-type-at_wf context-subset_wf istype-cubical-type-at I_cube_wf istype-cubical-term cubical-fun_wf thin-context-subset cubical-type_wf cubical_set_wf all_wf cubical-term-at-comp-is-1 nh-comp_wf cubical-type-ap-morph_wf subtype_rel-equal cube_set_restriction_pair_lemma squash_wf true_wf cube-set-restriction-comp iff_weakening_equal cubical_type_at_pair_lemma cube-set-restriction-id nh-id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis setEquality hypothesisEquality because_Cache applyEquality sqequalRule lambdaFormation_alt universeIsType setElimination rename dependent_functionElimination Error :memTop,  dependent_set_memberEquality_alt equalityIstype inhabitedIsType equalityTransitivity equalitySymmetry instantiate lambdaEquality_alt productEquality cumulativity isectEquality independent_isectElimination independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination setIsType hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].  \mforall{}[t:J:fset(\mBbbN{})
                                                                                                                                      {}\mrightarrow{}  f:\{f:J  {}\mrightarrow{}  I|  phi(f(rho))  =  1\} 
                                                                                                                                      {}\mrightarrow{}  T(f(rho))].  \mforall{}[a:A(rho)].
    (glue-equations(Gamma;A;phi;T;w;I;rho;t;a)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-PM-05_38_35
Last ObjectModification: 2020_04_21-PM-05_19_16

Theory : cubical!type!theory


Home Index