Nuprl Lemma : istype-cubical-universe-term
∀X:j⊢. istype({X ⊢ _:c𝕌})
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
istype: istype(T)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-term_wf-universe, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
inhabitedIsType, 
universeIsType, 
equalityIstype, 
independent_functionElimination, 
instantiate
Latex:
\mforall{}X:j\mvdash{}.  istype(\{X  \mvdash{}  \_:c\mBbbU{}\})
Date html generated:
2020_05_20-PM-07_07_16
Last ObjectModification:
2020_04_25-PM-01_28_51
Theory : cubical!type!theory
Home
Index