Nuprl Lemma : istype-cubical-universe-term

X:j⊢istype({X ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet istype: istype(T) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q
Lemmas referenced :  cubical-term_wf-universe cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry inhabitedIsType universeIsType equalityIstype independent_functionElimination instantiate

Latex:
\mforall{}X:j\mvdash{}.  istype(\{X  \mvdash{}  \_:c\mBbbU{}\})



Date html generated: 2020_05_20-PM-07_07_16
Last ObjectModification: 2020_04_25-PM-01_28_51

Theory : cubical!type!theory


Home Index