Nuprl Lemma : csm-glue-comp

[G:j⊢]. ∀[K:Top]. ∀[A:{G ⊢ _}]. ∀[psi:{G ⊢ _:𝔽}]. ∀[T:{G, psi ⊢ _}]. ∀[cA,cT,f,tau:Top].
  ((comp(Glue [psi ⊢→ (T, f)] A) )tau comp(Glue [(psi)tau ⊢→ ((T)tau, (f)tau)] (A)tau) )


Proof




Definitions occuring in Statement :  glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  csm-comp-structure: (cA)tau context-subset: Gamma, phi face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] csm-comp-structure: (cA)tau glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  member: t ∈ T csm-ap-term: (t)s interval-type: 𝕀 csm-comp: F csm-ap: (s)x compose: g cubical-type: {X ⊢ _} csm-ap-type: (AF)s interval-1: 1(𝕀) csm-id-adjoin: [u] partial-term-1: u[1] cc-fst: p cc-snd: q interval-0: 0(𝕀) csm-id: 1(X) csm-adjoin: (s;u)
Lemmas referenced :  csm-equiv-fun cubical-type_wf context-subset_wf istype-cubical-term face-type_wf istype-top cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesisEquality hypothesis because_Cache setElimination rename productElimination universeIsType instantiate

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[K:Top].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{G,  psi  \mvdash{}  \_\}].  \mforall{}[cA,cT,f,tau:Top].
    ((comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)  )tau  \msim{}  comp(Glue  [(psi)tau  \mvdash{}\mrightarrow{}  ((T)tau,  (f)tau)]  (A)tau)  )



Date html generated: 2020_05_20-PM-07_04_15
Last ObjectModification: 2020_04_21-PM-07_53_16

Theory : cubical!type!theory


Home Index