Nuprl Lemma : universe-encode_wf

[G:j⊢]. ∀[T:{G ⊢ _}]. ∀[cT:G ⊢ CompOp(T)].  (encode(T;cT) ∈ {G ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  universe-encode: encode(T;cT) cubical-universe: c𝕌 composition-op: Gamma ⊢ CompOp(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term: {X ⊢ _:A} universe-encode: encode(T;cT) all: x:A. B[x] subtype_rel: A ⊆B cubical-universe: c𝕌 closed-cubical-universe: cc𝕌 closed-type-to-type: closed-type-to-type(T) csm-fibrant-type: csm-fibrant-type(G;H;s;FT) squash: T prop: names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) pi1: fst(t) formal-cube: formal-cube(I) true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q csm-composition: (comp)sigma csm-comp: F csm-ap: (s)x compose: g cubical-type: {X ⊢ _} csm-ap-type: (AF)s
Lemmas referenced :  cubical-universe_wf cubical-universe-at I_cube_wf fset_wf nat_wf names-hom_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf csm-ap-type_wf formal-cube_wf1 context-map_wf csm-composition_wf cubical_type_ap_morph_pair_lemma equal_wf squash_wf true_wf istype-universe csm-ap-comp-type subtype_rel_self iff_weakening_equal cube_set_map_wf context-map-comp2 subtype_rel-equal csm-comp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality_alt functionExtensionality sqequalRule Error :memTop,  lambdaFormation_alt universeIsType because_Cache functionIsType equalityIstype instantiate equalityTransitivity equalitySymmetry applyEquality dependent_pairEquality_alt dependent_functionElimination lambdaEquality_alt imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination inhabitedIsType setElimination rename

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G  \mvdash{}  \_\}].  \mforall{}[cT:G  \mvdash{}  CompOp(T)].    (encode(T;cT)  \mmember{}  \{G  \mvdash{}  \_:c\mBbbU{}\})



Date html generated: 2020_05_20-PM-07_10_00
Last ObjectModification: 2020_04_25-PM-08_16_46

Theory : cubical!type!theory


Home Index