Nuprl Lemma : cubical-universe-at

[I,a:Top].  (c𝕌(a) A:{formal-cube(I) ⊢ _} × formal-cube(I) ⊢ CompOp(A))


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 composition-op: Gamma ⊢ CompOp(A) cubical-type-at: A(a) cubical-type: {X ⊢ _} formal-cube: formal-cube(I) uall: [x:A]. B[x] top: Top product: x:A × B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-universe: c𝕌 cubical-type-at: A(a) closed-type-to-type: closed-type-to-type(T) closed-cubical-universe: cc𝕌 pi1: fst(t) fibrant-type: FibrantType(X)
Lemmas referenced :  istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule axiomSqEquality inhabitedIsType hypothesisEquality sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesis isectIsTypeImplies extract_by_obid

Latex:
\mforall{}[I,a:Top].    (c\mBbbU{}(a)  \msim{}  A:\{formal-cube(I)  \mvdash{}  \_\}  \mtimes{}  formal-cube(I)  \mvdash{}  CompOp(A))



Date html generated: 2020_05_20-PM-07_07_30
Last ObjectModification: 2020_04_25-AM-11_35_37

Theory : cubical!type!theory


Home Index