Nuprl Lemma : cubical-universe-at
∀[I,a:Top].  (c𝕌(a) ~ A:{formal-cube(I) ⊢ _} × formal-cube(I) ⊢ CompOp(A))
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
formal-cube: formal-cube(I)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-universe: c𝕌
, 
cubical-type-at: A(a)
, 
closed-type-to-type: closed-type-to-type(T)
, 
closed-cubical-universe: cc𝕌
, 
pi1: fst(t)
, 
fibrant-type: FibrantType(X)
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesis, 
isectIsTypeImplies, 
extract_by_obid
Latex:
\mforall{}[I,a:Top].    (c\mBbbU{}(a)  \msim{}  A:\{formal-cube(I)  \mvdash{}  \_\}  \mtimes{}  formal-cube(I)  \mvdash{}  CompOp(A))
Date html generated:
2020_05_20-PM-07_07_30
Last ObjectModification:
2020_04_25-AM-11_35_37
Theory : cubical!type!theory
Home
Index