Nuprl Lemma : cubical-universe-cumulativity
∀[X:j⊢]. ({X ⊢ _:c𝕌} ⊆r {X ⊢ _:c𝕌'})
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
cubical-universe-cumulativity2, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
universeIsType, 
instantiate
Latex:
\mforall{}[X:j\mvdash{}].  (\{X  \mvdash{}  \_:c\mBbbU{}\}  \msubseteq{}r  \{X  \mvdash{}  \_:c\mBbbU{}'\})
Date html generated:
2020_05_20-PM-07_09_43
Last ObjectModification:
2020_04_25-PM-03_21_59
Theory : cubical!type!theory
Home
Index