Nuprl Lemma : equiv-fun_wf

[G:j⊢]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}].  (equiv-fun(f) ∈ {G ⊢ _:(T ⟶ A)})


Proof




Definitions occuring in Statement :  equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-equiv: Equiv(T;A) equiv-fun: equiv-fun(f) subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  cubical-fst_wf cubical-fun_wf is-cubical-equiv_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf cc-snd_wf-cubical-fun cubical-term_wf cubical-equiv_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution sqequalRule extract_by_obid isectElimination thin hypothesisEquality hypothesis instantiate applyEquality because_Cache dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].    (equiv-fun(f)  \mmember{}  \{G  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\})



Date html generated: 2020_05_20-PM-03_26_56
Last ObjectModification: 2020_04_06-PM-06_45_16

Theory : cubical!type!theory


Home Index