Nuprl Lemma : equiv-fun_wf
∀[G:j⊢]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}].  (equiv-fun(f) ∈ {G ⊢ _:(T ⟶ A)})
Proof
Definitions occuring in Statement : 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-equiv: Equiv(T;A)
, 
equiv-fun: equiv-fun(f)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
cubical-fst_wf, 
cubical-fun_wf, 
is-cubical-equiv_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm-ap-type_wf, 
cc-fst_wf, 
cc-snd_wf-cubical-fun, 
cubical-term_wf, 
cubical-equiv_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].    (equiv-fun(f)  \mmember{}  \{G  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\})
Date html generated:
2020_05_20-PM-03_26_56
Last ObjectModification:
2020_04_06-PM-06_45_16
Theory : cubical!type!theory
Home
Index