Nuprl Lemma : csm-universe-encode
∀[G:j⊢]. ∀[T:{G ⊢ _}]. ∀[cT:G ⊢ CompOp(T)]. ∀[H:j⊢]. ∀[s:H j⟶ G].  ((encode(T;cT))s = encode((T)s;(cT)s) ∈ {H ⊢ _:c𝕌})
Proof
Definitions occuring in Statement : 
universe-encode: encode(T;cT)
, 
cubical-universe: c𝕌
, 
csm-composition: (comp)sigma
, 
composition-op: Gamma ⊢ CompOp(A)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
cubical-term: {X ⊢ _:A}
, 
universe-encode: encode(T;cT)
, 
csm-ap-term: (t)s
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
csm-composition: (comp)sigma
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
compose: f o g
Lemmas referenced : 
cubical-term-equal, 
cubical-universe_wf, 
cube_set_map_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
csm-ap-term_wf, 
universe-encode_wf, 
csm-cubical-universe, 
csm-ap-type_wf, 
csm-composition_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-universe-at, 
formal-cube_wf1, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
context-map_wf, 
csm-ap_wf, 
csm-ap-comp-type, 
subtype_rel_self, 
iff_weakening_equal, 
csm-comp-context-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
universeIsType, 
inhabitedIsType, 
applyEquality, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
setElimination, 
rename, 
functionExtensionality, 
dependent_pairEquality_alt, 
imageElimination, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G  \mvdash{}  \_\}].  \mforall{}[cT:G  \mvdash{}  CompOp(T)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((encode(T;cT))s  =  encode((T)s;(cT)s))
Date html generated:
2020_05_20-PM-07_10_18
Last ObjectModification:
2020_04_25-PM-08_24_58
Theory : cubical!type!theory
Home
Index