Nuprl Lemma : csm-universe-encode

[G:j⊢]. ∀[T:{G ⊢ _}]. ∀[cT:G ⊢ CompOp(T)]. ∀[H:j⊢]. ∀[s:H j⟶ G].  ((encode(T;cT))s encode((T)s;(cT)s) ∈ {H ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  universe-encode: encode(T;cT) cubical-universe: c𝕌 csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B cubical-term: {X ⊢ _:A} universe-encode: encode(T;cT) csm-ap-term: (t)s squash: T prop: all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q csm-composition: (comp)sigma csm-comp: F csm-ap: (s)x compose: g
Lemmas referenced :  cubical-term-equal cubical-universe_wf cube_set_map_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf csm-ap-term_wf universe-encode_wf csm-cubical-universe csm-ap-type_wf csm-composition_wf I_cube_wf fset_wf nat_wf cubical-universe-at formal-cube_wf1 equal_wf squash_wf true_wf istype-universe context-map_wf csm-ap_wf csm-ap-comp-type subtype_rel_self iff_weakening_equal csm-comp-context-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis independent_isectElimination universeIsType inhabitedIsType applyEquality sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry lambdaEquality_alt setElimination rename functionExtensionality dependent_pairEquality_alt imageElimination universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination because_Cache

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:\{G  \mvdash{}  \_\}].  \mforall{}[cT:G  \mvdash{}  CompOp(T)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((encode(T;cT))s  =  encode((T)s;(cT)s))



Date html generated: 2020_05_20-PM-07_10_18
Last ObjectModification: 2020_04_25-PM-08_24_58

Theory : cubical!type!theory


Home Index