Nuprl Lemma : universe-decode_wf

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}].  X ⊢ decode(t)


Proof




Definitions occuring in Statement :  universe-decode: decode(t) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-universe: c𝕌 closed-type-to-type: closed-type-to-type(T) closed-cubical-universe: cc𝕌 all: x:A. B[x] member: t ∈ T cubical-type: {X ⊢ _} universe-decode: decode(t) and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q pi1: fst(t) I_cube: A(I) functor-ob: ob(F) formal-cube: formal-cube(I) names-hom: I ⟶ J csm-fibrant-type: csm-fibrant-type(G;H;s;FT) fibrant-type: FibrantType(X) so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) context-map: <rho> csm-ap: (s)x functor-arrow: arrow(F) cube-set-restriction: f(s)
Lemmas referenced :  cubical_type_at_pair_lemma fibrant-type_wf_formal-cube istype-top fset_wf nat_wf cubical-term-at_wf cubical-universe_wf I_cube_wf nh-id_wf subtype_rel-equal cube-set-restriction_wf equal_wf squash_wf true_wf istype-universe cube-set-restriction-id subtype_rel_self iff_weakening_equal names-hom_wf nh-comp_wf cube-set-restriction-comp istype-cubical-universe-term cubical_set_wf cubical-universe-at cubical-type-at_wf formal-cube_wf1 cubical-term-at-morph1 cubical_type_ap_morph_pair_lemma pi2_wf cubical-type_wf composition-op_wf cubical-type-cumulativity2 pi1_wf_top csm-ap-type_wf context-map_wf csm-composition_wf cubical-type-ap-morph_wf I_cube_pair_redex_lemma istype-cubical-type-at csm-ap-type-at cube_set_restriction_pair_lemma arrow_pair_lemma nh-id-right nh-id-left cubical-type-ap-morph-id subtype_rel_universe1 cubical-type-ap-morph-comp formal-cube-restriction nh-comp-assoc csm-cubical-type-ap-morph trivial-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis lambdaFormation_alt isectElimination hypothesisEquality universeIsType instantiate because_Cache dependent_set_memberEquality_alt productElimination productIsType functionIsType applyEquality equalityIstype independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_pairEquality_alt inhabitedIsType applyLambdaEquality independent_pairEquality hyp_replacement closedConclusion independent_pairFormation setElimination rename

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    X  \mvdash{}  decode(t)



Date html generated: 2020_05_20-PM-07_10_46
Last ObjectModification: 2020_04_25-PM-09_03_49

Theory : cubical!type!theory


Home Index