Nuprl Lemma : fibrant-type_wf_formal-cube

[I:fset(ℕ)]. (FibrantType(formal-cube(I)) ∈ 𝕌')


Proof




Definitions occuring in Statement :  fibrant-type: FibrantType(X) formal-cube: formal-cube(I) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T guard: {T}
Lemmas referenced :  fibrant-type_wf formal-cube_wf1 fset_wf nat_wf
Rules used in proof :  cut instantiate introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[I:fset(\mBbbN{})].  (FibrantType(formal-cube(I))  \mmember{}  \mBbbU{}')



Date html generated: 2020_05_20-PM-05_19_56
Last ObjectModification: 2020_04_25-PM-00_10_48

Theory : cubical!type!theory


Home Index