Nuprl Lemma : fibrant-type_wf

[X:j⊢]. (FibrantType(X) ∈ 𝕌{[i' j']})


Proof




Definitions occuring in Statement :  fibrant-type: FibrantType(X) cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fibrant-type: FibrantType(X) subtype_rel: A ⊆B
Lemmas referenced :  cubical-type_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  (FibrantType(X)  \mmember{}  \mBbbU{}\{[i'  |  j']\})



Date html generated: 2020_05_20-PM-05_19_42
Last ObjectModification: 2020_04_14-PM-10_38_26

Theory : cubical!type!theory


Home Index