Nuprl Lemma : fibrant-type_wf
∀[X:j⊢]. (FibrantType(X) ∈ 𝕌{[i' | j']})
Proof
Definitions occuring in Statement : 
fibrant-type: FibrantType(X)
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fibrant-type: FibrantType(X)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-type_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  (FibrantType(X)  \mmember{}  \mBbbU{}\{[i'  |  j']\})
Date html generated:
2020_05_20-PM-05_19_42
Last ObjectModification:
2020_04_14-PM-10_38_26
Theory : cubical!type!theory
Home
Index