Nuprl Lemma : universe-comp-op_wf
∀[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}].  (compOp(t) ∈ X ⊢ CompOp(decode(t)))
Proof
Definitions occuring in Statement : 
universe-comp-op: compOp(t)
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
composition-op: Gamma ⊢ CompOp(A)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
universe-comp-op: compOp(t)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
csm-ap-type: (AF)s
, 
cubical-term-at: u(a)
, 
subset-iota: iota
, 
csm-comp: G o F
, 
universe-decode: decode(t)
, 
csm-ap: (s)x
, 
compose: f o g
, 
universe-type: universe-type(t;I;a)
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
formal-cube: formal-cube(I)
, 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
names-hom: I ⟶ J
, 
cubical-universe: c𝕌
, 
closed-cubical-universe: cc𝕌
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
closed-type-to-type: closed-type-to-type(T)
, 
context-map: <rho>
, 
functor-arrow: arrow(F)
, 
nh-comp: g ⋅ f
, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
, 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1)
, 
composition-uniformity: composition-uniformity(Gamma;A;comp)
, 
cubical-type-at: A(a)
, 
fibrant-type: FibrantType(X)
, 
label: ...$L... t
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
subset-trans: subset-trans(I;J;f;x)
, 
cube-set-restriction: f(s)
, 
name-morph-satisfies: (psi f) = 1
, 
csm-composition: (comp)sigma
Lemmas referenced : 
composition-uniformity_wf, 
universe-decode_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
cubical-term-at_wf, 
cubical-universe_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
cubical-universe-at, 
I_cube_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
face-presheaf_wf2, 
cubical-term-eqcd, 
cubical-subset_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
csm-universe-decode, 
context-map-1, 
cubical-type_wf, 
formal-cube_wf1, 
universe-type_wf, 
cubical-type-subtype-cubical-subset, 
equal_wf, 
csm-ap-id-type, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
istype-universe, 
csm-ap-type_wf, 
cube_set_map_wf, 
csm-subtype-cubical-subset, 
subtype_rel_self, 
universe-decode-type, 
cubical-type-at_wf, 
I_cube_pair_redex_lemma, 
nh-id_wf, 
subtype_rel_universe1, 
cubical-universe-cumulativity, 
nc-0_wf, 
universe-decode-restriction, 
cubical-subset-I_cube, 
universe-type-at, 
names-hom_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cube-set-restriction-comp, 
nh-comp_wf, 
formal-cube-restriction, 
nh-id-right, 
cubical_type_ap_morph_pair_lemma, 
cubical-term-at-morph, 
pi2_wf, 
composition-op_wf, 
pi1_wf_top, 
context-map_wf, 
csm-composition_wf, 
istype-cubical-type-at, 
cube_set_restriction_pair_lemma, 
subtype_rel-equal, 
csm-ap-type-at, 
s-comp-if-lemma1, 
csm-ap_wf, 
cubical-type-ap-morph_wf, 
arrow_pair_lemma, 
nh-id-left, 
csm-cubical-type-ap-morph, 
nh-comp-assoc, 
csm-comp_wf, 
subset-iota_wf, 
name-morph-satisfies-comp, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
name-morph-satisfies_wf, 
s-comp-nc-0, 
nc-1_wf, 
s-comp-nc-1, 
istype-cubical-term, 
equal_functionality_wrt_subtype_rel2, 
cubical-type-cumulativity, 
istype-top, 
subtype_rel_product, 
top_wf, 
cubical_type_at_pair_lemma, 
nc-e'_wf, 
cubical-path-0_wf, 
cubical-term_wf, 
fl-morph-restriction, 
nc-e'-lemma3, 
fl-morph_wf, 
subset-trans_wf, 
csm-ap-term_wf, 
cubical-path-0-ap-morph, 
csm-ap-context-map, 
context-map_wf_cubical-subset, 
cubical-path-condition_wf, 
nc-e'-lemma2, 
trivial-equal, 
nc-e'-lemma1, 
cube-set-restriction-id, 
member_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
dependent_set_memberEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
dependent_functionElimination, 
instantiate, 
lambdaEquality_alt, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
productElimination, 
equalityIstype, 
setIsType, 
functionIsType, 
applyEquality, 
intEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
hyp_replacement, 
functionEquality, 
cumulativity, 
universeEquality, 
setEquality, 
independent_pairEquality, 
dependent_pairEquality_alt, 
productIsType, 
closedConclusion, 
productEquality, 
isectEquality
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    (compOp(t)  \mmember{}  X  \mvdash{}  CompOp(decode(t)))
Date html generated:
2020_05_20-PM-07_15_46
Last ObjectModification:
2020_04_27-PM-01_32_47
Theory : cubical!type!theory
Home
Index