Nuprl Lemma : universe-comp-op_wf

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}].  (compOp(t) ∈ X ⊢ CompOp(decode(t)))


Proof




Definitions occuring in Statement :  universe-comp-op: compOp(t) universe-decode: decode(t) cubical-universe: c𝕌 composition-op: Gamma ⊢ CompOp(A) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-op: Gamma ⊢ CompOp(A) prop: all: x:A. B[x] universe-comp-op: compOp(t) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] squash: T csm-ap-type: (AF)s cubical-term-at: u(a) subset-iota: iota csm-comp: F universe-decode: decode(t) csm-ap: (s)x compose: g universe-type: universe-type(t;I;a) true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) formal-cube: formal-cube(I) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) I_cube: A(I) functor-ob: ob(F) names-hom: I ⟶ J cubical-universe: c𝕌 closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) closed-type-to-type: closed-type-to-type(T) context-map: <rho> functor-arrow: arrow(F) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) composition-uniformity: composition-uniformity(Gamma;A;comp) cubical-type-at: A(a) fibrant-type: FibrantType(X) label: ...$L... t cubical-type: {X ⊢ _} csm-id: 1(X) subset-trans: subset-trans(I;J;f;x) cube-set-restriction: f(s) name-morph-satisfies: (psi f) 1 csm-composition: (comp)sigma
Lemmas referenced :  composition-uniformity_wf universe-decode_wf istype-cubical-universe-term cubical_set_wf cubical-term-at_wf cubical-universe_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cubical-universe-at I_cube_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf face-presheaf_wf2 cubical-term-eqcd cubical-subset_wf cube-set-restriction_wf nc-s_wf f-subset-add-name csm-universe-decode context-map-1 cubical-type_wf formal-cube_wf1 universe-type_wf cubical-type-subtype-cubical-subset equal_wf csm-ap-id-type iff_weakening_equal squash_wf true_wf istype-universe csm-ap-type_wf cube_set_map_wf csm-subtype-cubical-subset subtype_rel_self universe-decode-type cubical-type-at_wf I_cube_pair_redex_lemma nh-id_wf subtype_rel_universe1 cubical-universe-cumulativity nc-0_wf universe-decode-restriction cubical-subset-I_cube universe-type-at names-hom_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cube-set-restriction-comp nh-comp_wf formal-cube-restriction nh-id-right cubical_type_ap_morph_pair_lemma cubical-term-at-morph pi2_wf composition-op_wf pi1_wf_top context-map_wf csm-composition_wf istype-cubical-type-at cube_set_restriction_pair_lemma subtype_rel-equal csm-ap-type-at s-comp-if-lemma1 csm-ap_wf cubical-type-ap-morph_wf arrow_pair_lemma nh-id-left csm-cubical-type-ap-morph nh-comp-assoc csm-comp_wf subset-iota_wf name-morph-satisfies-comp lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf name-morph-satisfies_wf s-comp-nc-0 nc-1_wf s-comp-nc-1 istype-cubical-term equal_functionality_wrt_subtype_rel2 cubical-type-cumulativity istype-top subtype_rel_product top_wf cubical_type_at_pair_lemma nc-e'_wf cubical-path-0_wf cubical-term_wf fl-morph-restriction nc-e'-lemma3 fl-morph_wf subset-trans_wf csm-ap-term_wf cubical-path-0-ap-morph csm-ap-context-map context-map_wf_cubical-subset cubical-path-condition_wf nc-e'-lemma2 trivial-equal nc-e'-lemma1 cube-set-restriction-id member_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis universeIsType dependent_functionElimination instantiate lambdaEquality_alt setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation voidElimination equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt productElimination equalityIstype setIsType functionIsType applyEquality intEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination hyp_replacement functionEquality cumulativity universeEquality setEquality independent_pairEquality dependent_pairEquality_alt productIsType closedConclusion productEquality isectEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].    (compOp(t)  \mmember{}  X  \mvdash{}  CompOp(decode(t)))



Date html generated: 2020_05_20-PM-07_15_46
Last ObjectModification: 2020_04_27-PM-01_32_47

Theory : cubical!type!theory


Home Index