Nuprl Lemma : universe-type_wf
∀[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  formal-cube(I) ⊢ universe-type(t;I;a)
Proof
Definitions occuring in Statement : 
universe-type: universe-type(t;I;a)
, 
cubical-universe: c𝕌
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
formal-cube: formal-cube(I)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
universe-type: universe-type(t;I;a)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-universe_wf, 
cubical-term-at_wf, 
cubical-universe-at, 
pi1_wf_top, 
cubical-type_wf, 
formal-cube_wf1, 
I_cube_wf, 
fset_wf, 
nat_wf, 
istype-cubical-universe-term, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
inhabitedIsType, 
lambdaFormation_alt, 
Error :memTop, 
productElimination, 
independent_pairEquality, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].    formal-cube(I)  \mvdash{}  universe-type(t;I;a)
Date html generated:
2020_05_20-PM-07_08_14
Last ObjectModification:
2020_04_25-PM-01_32_11
Theory : cubical!type!theory
Home
Index