Nuprl Lemma : universe-type_wf

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}]. ∀[I:fset(ℕ)]. ∀[a:X(I)].  formal-cube(I) ⊢ universe-type(t;I;a)


Proof




Definitions occuring in Statement :  universe-type: universe-type(t;I;a) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] universe-type: universe-type(t;I;a) member: t ∈ T all: x:A. B[x] implies:  Q
Lemmas referenced :  cubical-universe_wf cubical-term-at_wf cubical-universe-at pi1_wf_top cubical-type_wf formal-cube_wf1 I_cube_wf fset_wf nat_wf istype-cubical-universe-term cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate inhabitedIsType lambdaFormation_alt Error :memTop,  productElimination independent_pairEquality equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].    formal-cube(I)  \mvdash{}  universe-type(t;I;a)



Date html generated: 2020_05_20-PM-07_08_14
Last ObjectModification: 2020_04_25-PM-01_32_11

Theory : cubical!type!theory


Home Index