Nuprl Lemma : context-map-1

[I:fset(ℕ)]. (<1> 1(formal-cube(I)) ∈ formal-cube(I) ⟶ formal-cube(I))


Proof




Definitions occuring in Statement :  csm-id: 1(X) context-map: <rho> cube_set_map: A ⟶ B formal-cube: formal-cube(I) nh-id: 1 fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-cat: CubeCat all: x:A. B[x] cube_set_map: A ⟶ B formal-cube: formal-cube(I) Yoneda: Yoneda(I) context-map: <rho> ps-context-map: <rho> csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  ps-context-map-1 cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[I:fset(\mBbbN{})].  (ə>  =  1(formal-cube(I)))



Date html generated: 2020_05_20-PM-01_42_08
Last ObjectModification: 2020_04_03-PM-04_00_13

Theory : cubical!type!theory


Home Index