Nuprl Lemma : ps-context-map-1

[C:SmallCategory]. ∀[I:cat-ob(C)].  (<cat-id(C) I> 1(Yoneda(I)) ∈ Yoneda(I) ⟶ Yoneda(I))


Proof




Definitions occuring in Statement :  pscm-id: 1(X) ps-context-map: <rho> psc_map: A ⟶ B Yoneda: Yoneda(I) uall: [x:A]. B[x] apply: a equal: t ∈ T cat-id: cat-id(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) I_set: A(I) functor-ob: ob(F) Yoneda: Yoneda(I) uimplies: supposing a pscm-id: 1(X) ps-context-map: <rho> and: P ∧ Q
Lemmas referenced :  cat-ob_wf small-category_wf Yoneda_wf ps-context-map_wf cat-id_wf subtype_rel_self I_set_wf pscm-id_wf pscm-equal2 I_set_pair_redex_lemma arrow_pair_lemma cat-comp-ident cat-arrow_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate dependent_functionElimination applyEquality lambdaFormation_alt because_Cache independent_isectElimination Error :memTop,  productElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:cat-ob(C)].    (<cat-id(C)  I>  =  1(Yoneda(I)))



Date html generated: 2020_05_20-PM-01_24_19
Last ObjectModification: 2020_04_03-PM-01_02_50

Theory : presheaf!models!of!type!theory


Home Index