Nuprl Lemma : ps-context-map-1
∀[C:SmallCategory]. ∀[I:cat-ob(C)].  (<cat-id(C) I> = 1(Yoneda(I)) ∈ Yoneda(I) ⟶ Yoneda(I))
Proof
Definitions occuring in Statement : 
pscm-id: 1(X)
, 
ps-context-map: <rho>
, 
psc_map: A ⟶ B
, 
Yoneda: Yoneda(I)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
cat-id: cat-id(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
cat-arrow: cat-arrow(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
I_set: A(I)
, 
functor-ob: ob(F)
, 
Yoneda: Yoneda(I)
, 
uimplies: b supposing a
, 
pscm-id: 1(X)
, 
ps-context-map: <rho>
, 
and: P ∧ Q
Lemmas referenced : 
cat-ob_wf, 
small-category_wf, 
Yoneda_wf, 
ps-context-map_wf, 
cat-id_wf, 
subtype_rel_self, 
I_set_wf, 
pscm-id_wf, 
pscm-equal2, 
I_set_pair_redex_lemma, 
arrow_pair_lemma, 
cat-comp-ident, 
cat-arrow_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
dependent_functionElimination, 
applyEquality, 
lambdaFormation_alt, 
because_Cache, 
independent_isectElimination, 
Error :memTop, 
productElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:cat-ob(C)].    (<cat-id(C)  I>  =  1(Yoneda(I)))
Date html generated:
2020_05_20-PM-01_24_19
Last ObjectModification:
2020_04_03-PM-01_02_50
Theory : presheaf!models!of!type!theory
Home
Index