Nuprl Lemma : universe-decode-type

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}]. ∀[I:fset(ℕ)]. ∀[rho:X(I)].  (decode((t)<rho>universe-type(t;I;rho) ∈ {formal-cube(I) ⊢ _})


Proof




Definitions occuring in Statement :  universe-decode: decode(t) universe-type: universe-type(t;I;a) cubical-universe: c𝕌 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} context-map: <rho> formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a universe-decode: decode(t) csm-ap-type: (AF)s cubical-term-at: u(a) cubical-type-at: A(a) context-map: <rho> csm-ap: (s)x functor-arrow: arrow(F) cube-set-restriction: f(s) implies:  Q cubical-type: {X ⊢ _} pi1: fst(t) pi2: snd(t) formal-cube: formal-cube(I) universe-type: universe-type(t;I;a) prop: squash: T true: True cubical-universe: c𝕌 closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) closed-type-to-type: closed-type-to-type(T) subtype_rel: A ⊆B names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q
Lemmas referenced :  csm-universe-decode cubical-type-equal2 formal-cube_wf1 universe-type_wf csm-ap-type_wf universe-decode_wf context-map_wf I_cube_wf fset_wf nat_wf istype-cubical-universe-term cubical_set_wf names-hom_wf cube-set-restriction_wf I_cube_pair_redex_lemma cubical-term-at-morph cubical-universe_wf cubical-universe-at pi1_wf_top cubical-type_wf cubical-type-at_wf nh-id_wf equal_wf squash_wf true_wf istype-universe cubical-term-at_wf cubical_type_ap_morph_pair_lemma cubical_type_at_pair_lemma nh-id-left subtype_rel_self composition-op_wf cubical-type-cumulativity2 csm-composition_wf istype-cubical-type-at pi2_wf csm-ap-type-at cube_set_restriction_pair_lemma nh-id-right cubical-type-ap-morph_wf arrow_pair_lemma csm-cubical-type-ap-morph
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis hypothesisEquality dependent_functionElimination independent_isectElimination universeIsType instantiate inhabitedIsType lambdaFormation_alt setElimination rename productElimination equalityIstype equalityTransitivity independent_functionElimination dependent_pairEquality_alt functionIsType because_Cache applyEquality functionExtensionality applyLambdaEquality independent_pairEquality hyp_replacement lambdaEquality_alt imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productIsType dependent_set_memberEquality_alt independent_pairFormation closedConclusion

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:X(I)].    (decode((t)<rho>)  =  universe-type(t;I;rho))



Date html generated: 2020_05_20-PM-07_11_24
Last ObjectModification: 2020_04_25-PM-09_22_28

Theory : cubical!type!theory


Home Index