Step
*
of Lemma
universe-decode-type
No Annotations
∀[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}]. ∀[I:fset(ℕ)]. ∀[rho:X(I)]. (decode((t)<rho>) = universe-type(t;I;rho) ∈ {formal-cube(I) ⊢ _})
BY
{ ((Intros⋅ THEN Symmetry)
THEN (RWO "csm-universe-decode<" 0 THENA Auto)
THEN (BLemma `cubical-type-equal2` THENA Auto)) }
1
1. X : CubicalSet{j}
2. t : {X ⊢ _:c𝕌}
3. I : fset(ℕ)
4. rho : X(I)
⊢ universe-type(t;I;rho)
= (decode(t))<rho>
∈ (A:I1:fset(ℕ) ⟶ formal-cube(I)(I1) ⟶ Type × (I1:fset(ℕ)
⟶ J:fset(ℕ)
⟶ f:J ⟶ I1
⟶ a:formal-cube(I)(I1)
⟶ (A I1 a)
⟶ (A J f(a))))
Latex:
Latex:
No Annotations
\mforall{}[X:j\mvdash{}]. \mforall{}[t:\{X \mvdash{} \_:c\mBbbU{}\}]. \mforall{}[I:fset(\mBbbN{})]. \mforall{}[rho:X(I)]. (decode((t)<rho>) = universe-type(t;I;rho))
By
Latex:
((Intros\mcdot{} THEN Symmetry)
THEN (RWO "csm-universe-decode<" 0 THENA Auto)
THEN (BLemma `cubical-type-equal2` THENA Auto))
Home
Index