Nuprl Lemma : universe-type-at

[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[K:fset(ℕ)]. ∀[f:K ⟶ I].
  (universe-type(t;I;a)(f) decode(t)(f(a)) ∈ Type)


Proof




Definitions occuring in Statement :  universe-decode: decode(t) universe-type: universe-type(t;I;a) cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical-type-at: A(a) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) pi1: fst(t) formal-cube: formal-cube(I) true: True squash: T prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  names-hom_wf I_cube_wf fset_wf nat_wf istype-cubical-universe-term cubical_set_wf formal-cube_wf1 subtype_rel_self cubical-type-at_wf universe-decode_wf cube-set-restriction_wf equal_wf squash_wf true_wf istype-universe cubical-type_wf universe-decode-type iff_weakening_equal csm-universe-decode csm-ap-type-at csm-ap-context-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache dependent_functionElimination instantiate universeEquality applyEquality sqequalRule natural_numberEquality Error :memTop,  lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[K:fset(\mBbbN{})].  \mforall{}[f:K  {}\mrightarrow{}  I].
    (universe-type(t;I;a)(f)  =  decode(t)(f(a)))



Date html generated: 2020_05_20-PM-07_12_15
Last ObjectModification: 2020_04_25-PM-09_28_18

Theory : cubical!type!theory


Home Index