Nuprl Lemma : rev-type-line-0
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}].  (((A)-)[0(𝕀)] ~ (A)[1(𝕀)])
Proof
Definitions occuring in Statement : 
rev-type-line: (A)-
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev-type-line: (A)-
, 
interval-rev: 1-(r)
, 
cubical-type: {X ⊢ _}
, 
interval-1: 1(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-type: (AF)s
, 
cc-snd: q
, 
cubical-term-at: u(a)
, 
cc-fst: p
, 
csm-adjoin: (s;u)
, 
interval-0: 0(𝕀)
, 
csm-id: 1(X)
, 
csm-ap: (s)x
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
dma-neg-dM0, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
axiomSqEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
productElimination, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
Error :memTop, 
hypothesis, 
because_Cache, 
universeIsType, 
instantiate, 
hypothesisEquality, 
applyEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].    (((A)-)[0(\mBbbI{})]  \msim{}  (A)[1(\mBbbI{})])
Date html generated:
2020_05_20-PM-04_17_03
Last ObjectModification:
2020_04_10-AM-04_49_00
Theory : cubical!type!theory
Home
Index