Step
*
of Lemma
composition-op-nc-e
No Annotations
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
∀I:fset(ℕ). ∀i,j:{j:ℕ| ¬j ∈ I} . ∀rho:Gamma(I+i). ∀phi:𝔽(I). ∀u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}.
∀a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
((comp I i rho phi u a0) = (comp I j e(i;j)(rho) phi (u)subset-trans(I+i;I+j;e(i;j);s(phi)) a0) ∈ A((i1)(rho)))
BY
{ (InstLemma `composition-op-uniformity` []
THEN RepeatFor 4 (ParallelLast')
THEN (D -1 With ⌜I⌝ THENA Auto)
THEN RepeatFor 2 (ParallelLast')
THEN (InstHyp [⌜1⌝] (-1)⋅ THENA Auto)
THEN RepeatFor 4 (ParallelLast')
THEN (RWO "nc-e'-1" (-1) THENA Auto)
THEN (Assert A((i1)(rho)) = A((j1)(e(i;j)(rho))) ∈ Type BY
Auto)) }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. comp : Gamma ⊢ CompOp(A)
4. I : fset(ℕ)
5. i : {i:ℕ| ¬i ∈ I}
6. j : {j:ℕ| ¬j ∈ I}
7. ∀g:I ⟶ I. ∀rho:Gamma(I+i). ∀phi:𝔽(I). ∀u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}.
∀a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
((comp I i rho phi u a0 (i1)(rho) g)
= (comp I j g,i=j(rho) g(phi) (u)subset-trans(I+i;I+j;g,i=j;s(phi)) (a0 (i0)(rho) g))
∈ A(g((i1)(rho))))
8. rho : Gamma(I+i)
9. phi : 𝔽(I)
10. u : {I+i,s(phi) ⊢ _:(A)<rho> o iota}
11. a0 : cubical-path-0(Gamma;A;I;i;rho;phi;u)
12. (comp I i rho phi u a0 (i1)(rho) 1)
= (comp I j e(i;j)(rho) 1(phi) (u)subset-trans(I+i;I+j;e(i;j);s(phi)) (a0 (i0)(rho) 1))
∈ A(1((i1)(rho)))
13. A((i1)(rho)) = A((j1)(e(i;j)(rho))) ∈ Type
⊢ (comp I i rho phi u a0) = (comp I j e(i;j)(rho) phi (u)subset-trans(I+i;I+j;e(i;j);s(phi)) a0) ∈ A((i1)(rho))
Latex:
Latex:
No Annotations
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. \mforall{}[comp:Gamma \mvdash{} CompOp(A)].
\mforall{}I:fset(\mBbbN{}). \mforall{}i,j:\{j:\mBbbN{}| \mneg{}j \mmember{} I\} . \mforall{}rho:Gamma(I+i). \mforall{}phi:\mBbbF{}(I). \mforall{}u:\{I+i,s(phi) \mvdash{} \_:(A)<rho> o iota\}.
\mforall{}a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
((comp I i rho phi u a0) = (comp I j e(i;j)(rho) phi (u)subset-trans(I+i;I+j;e(i;j);s(phi)) a0))
By
Latex:
(InstLemma `composition-op-uniformity` []
THEN RepeatFor 4 (ParallelLast')
THEN (D -1 With \mkleeneopen{}I\mkleeneclose{} THENA Auto)
THEN RepeatFor 2 (ParallelLast')
THEN (InstHyp [\mkleeneopen{}1\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN RepeatFor 4 (ParallelLast')
THEN (RWO "nc-e'-1" (-1) THENA Auto)
THEN (Assert A((i1)(rho)) = A((j1)(e(i;j)(rho))) BY
Auto))
Home
Index