Nuprl Lemma : composition-op-nc-e

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
  ∀I:fset(ℕ). ∀i,j:{j:ℕ| ¬j ∈ I} . ∀rho:Gamma(I+i). ∀phi:𝔽(I). ∀u:{I+i,s(phi) ⊢ _:(A)<rho> iota}.
  ∀a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
    ((comp rho phi a0) (comp e(i;j)(rho) phi (u)subset-trans(I+i;I+j;e(i;j);s(phi)) a0) ∈ A((i1)(rho)))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-trans: subset-trans(I;J;f;x) subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-e: e(i;j) nc-1: (i1) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True composition-op: Gamma ⊢ CompOp(A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-type: {X ⊢ _} subset-iota: iota csm-comp: F csm-ap-type: (AF)s compose: g csm-ap: (s)x cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) sq_stable: SqStable(P) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) cubical-term-at: u(a) subset-trans: subset-trans(I;J;f;x) csm-ap-term: (t)s bdd-distributive-lattice: BoundedDistributiveLattice uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) context-map: <rho> functor-arrow: arrow(F) cube-set-restriction: f(s)
Lemmas referenced :  composition-op-uniformity nh-id_wf cubical-path-0_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-op_wf cubical-type_wf cubical_set_wf cubical-type-at_wf equal_wf squash_wf true_wf istype-universe nc-1_wf cube-set-restriction-comp nc-e_wf subtype_rel_self iff_weakening_equal nc-e-comp-nc-1 nc-e'-1 cubical-subset-term-trans subtype_rel-equal cube-set-restriction-id cubical-type-ap-morph-id names-hom_wf cube_set_map_wf nc-0_wf nc-e-comp-nc-0 sq_stable__cubical-path-condition cubical-subset-I_cube-member cubical-type-ap-morph_wf istype-cubical-type-at subtype_rel_weakening ext-eq_weakening nh-comp-assoc nh-comp_wf cubical-term-at_wf cubical-subset-I_cube name-morph-satisfies_wf nh-id-right uiff_transitivity2 name-morph-satisfies-comp lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf s-comp-nc-0 csm-ap-type-at cubical-path-condition_wf subtype_rel_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination universeIsType instantiate applyEquality because_Cache sqequalRule setElimination rename independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination inhabitedIsType setIsType functionIsType intEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination hyp_replacement equalityIstype productIsType applyLambdaEquality productEquality cumulativity isectEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    \mforall{}I:fset(\mBbbN{}).  \mforall{}i,j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I\}  .  \mforall{}rho:Gamma(I+i).  \mforall{}phi:\mBbbF{}(I).  \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}.
    \mforall{}a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
        ((comp  I  i  rho  phi  u  a0)  =  (comp  I  j  e(i;j)(rho)  phi  (u)subset-trans(I+i;I+j;e(i;j);s(phi))  a0))



Date html generated: 2020_05_20-PM-03_50_34
Last ObjectModification: 2020_04_09-PM-01_57_10

Theory : cubical!type!theory


Home Index