Nuprl Lemma : composition-op-nc-e
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
  ∀I:fset(ℕ). ∀i,j:{j:ℕ| ¬j ∈ I} . ∀rho:Gamma(I+i). ∀phi:𝔽(I). ∀u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}.
  ∀a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
    ((comp I i rho phi u a0) = (comp I j e(i;j)(rho) phi (u)subset-trans(I+i;I+j;e(i;j);s(phi)) a0) ∈ A((i1)(rho)))
Proof
Definitions occuring in Statement : 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
subset-trans: subset-trans(I;J;f;x)
, 
subset-iota: iota
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
csm-comp: G o F
, 
context-map: <rho>
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-e: e(i;j)
, 
nc-1: (i1)
, 
nc-s: s
, 
add-name: I+i
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
csm-comp: G o F
, 
csm-ap-type: (AF)s
, 
compose: f o g
, 
csm-ap: (s)x
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
sq_stable: SqStable(P)
, 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)
, 
cubical-term-at: u(a)
, 
subset-trans: subset-trans(I;J;f;x)
, 
csm-ap-term: (t)s
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
context-map: <rho>
, 
functor-arrow: arrow(F)
, 
cube-set-restriction: f(s)
Lemmas referenced : 
composition-op-uniformity, 
nh-id_wf, 
cubical-path-0_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-term_wf, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical-type-cumulativity, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-type-at_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
nc-1_wf, 
cube-set-restriction-comp, 
nc-e_wf, 
subtype_rel_self, 
iff_weakening_equal, 
nc-e-comp-nc-1, 
nc-e'-1, 
cubical-subset-term-trans, 
subtype_rel-equal, 
cube-set-restriction-id, 
cubical-type-ap-morph-id, 
names-hom_wf, 
cube_set_map_wf, 
nc-0_wf, 
nc-e-comp-nc-0, 
sq_stable__cubical-path-condition, 
cubical-subset-I_cube-member, 
cubical-type-ap-morph_wf, 
istype-cubical-type-at, 
subtype_rel_weakening, 
ext-eq_weakening, 
nh-comp-assoc, 
nh-comp_wf, 
cubical-term-at_wf, 
cubical-subset-I_cube, 
name-morph-satisfies_wf, 
nh-id-right, 
uiff_transitivity2, 
name-morph-satisfies-comp, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
s-comp-nc-0, 
csm-ap-type-at, 
cubical-path-condition_wf, 
subtype_rel_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
universeIsType, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
inhabitedIsType, 
setIsType, 
functionIsType, 
intEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
hyp_replacement, 
equalityIstype, 
productIsType, 
applyLambdaEquality, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    \mforall{}I:fset(\mBbbN{}).  \mforall{}i,j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I\}  .  \mforall{}rho:Gamma(I+i).  \mforall{}phi:\mBbbF{}(I).  \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}.
    \mforall{}a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
        ((comp  I  i  rho  phi  u  a0)  =  (comp  I  j  e(i;j)(rho)  phi  (u)subset-trans(I+i;I+j;e(i;j);s(phi))  a0))
Date html generated:
2020_05_20-PM-03_50_34
Last ObjectModification:
2020_04_09-PM-01_57_10
Theory : cubical!type!theory
Home
Index