Nuprl Lemma : uiff_transitivity2
∀[P,Q,R:ℙ].  (uiff(P;Q) 
⇒ (Q = R ∈ ℙ) 
⇒ uiff(P;R))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
iff_weakening_equal, 
equal_wf, 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
hypothesisEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
instantiate, 
universeEquality, 
because_Cache
Latex:
\mforall{}[P,Q,R:\mBbbP{}].    (uiff(P;Q)  {}\mRightarrow{}  (Q  =  R)  {}\mRightarrow{}  uiff(P;R))
Date html generated:
2016_10_21-AM-09_34_49
Last ObjectModification:
2016_07_12-AM-04_59_33
Theory : core_2
Home
Index