Nuprl Lemma : composition-op-uniformity

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
  ∀I,J:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀j:{j:ℕ| ¬j ∈ J} . ∀g:J ⟶ I. ∀rho:Gamma(I+i). ∀phi:𝔽(I).
  ∀u:{I+i,s(phi) ⊢ _:(A)<rho> iota}. ∀a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
    ((comp rho phi a0 (i1)(rho) g)
    (comp g,i=j(rho) g(phi) (u)subset-trans(I+i;J+j;g,i=j;s(phi)) (a0 (i0)(rho) g))
    ∈ A(g((i1)(rho))))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-trans: subset-trans(I;J;f;x) subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-e': g,i=j nc-1: (i1) nc-0: (i0) nc-s: s add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] all: x:A. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] composition-op: Gamma ⊢ CompOp(A) composition-uniformity: composition-uniformity(Gamma;A;comp) subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cubical-path-0_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le names-hom_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution setElimination thin rename hypothesis dependent_functionElimination hypothesisEquality universeIsType instantiate extract_by_obid isectElimination applyEquality sqequalRule because_Cache independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType intEquality inhabitedIsType axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    \mforall{}I,J:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  .  \mforall{}g:J  {}\mrightarrow{}  I.  \mforall{}rho:Gamma(I+i).  \mforall{}phi:\mBbbF{}(I).
    \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}.  \mforall{}a0:cubical-path-0(Gamma;A;I;i;rho;phi;u).
        ((comp  I  i  rho  phi  u  a0  (i1)(rho)  g)
        =  (comp  J  j  g,i=j(rho)  g(phi)  (u)subset-trans(I+i;J+j;g,i=j;s(phi))  (a0  (i0)(rho)  g)))



Date html generated: 2020_05_20-PM-03_50_08
Last ObjectModification: 2020_04_09-PM-01_13_54

Theory : cubical!type!theory


Home Index