Step
*
1
of Lemma
composition-term-uniformity
1. H : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K jā¶ H
4. phi : {H ā¢ _:š½}
5. A : {H.š ā¢ _}
6. u : {H, phi.š ā¢ _:A}
7. a0 : {H ā¢ _:(A)[0(š)][phi |ā¶ (u)[0(š)]]}
8. cA : H.š ā¢ CompOp(A)
9. ((phi)p)tau+ ā {K.š ā¢ _:š½}
ā¢ (comp cA [phi ā¢ā u] a0)tau = comp (cA)tau+ [(phi)tau ā¢ā (u)tau+] (a0)tau ā {K ā¢ _:((A)[1(š)])tau}
BY
{ BLemma `cubical-term-equal2` }
1
.....wf.....
1. H : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K jā¶ H
4. phi : {H ā¢ _:š½}
5. A : {H.š ā¢ _}
6. u : {H, phi.š ā¢ _:A}
7. a0 : {H ā¢ _:(A)[0(š)][phi |ā¶ (u)[0(š)]]}
8. cA : H.š ā¢ CompOp(A)
9. ((phi)p)tau+ ā {K.š ā¢ _:š½}
ā¢ K jā¢
2
.....wf.....
1. H : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K jā¶ H
4. phi : {H ā¢ _:š½}
5. A : {H.š ā¢ _}
6. u : {H, phi.š ā¢ _:A}
7. a0 : {H ā¢ _:(A)[0(š)][phi |ā¶ (u)[0(š)]]}
8. cA : H.š ā¢ CompOp(A)
9. ((phi)p)tau+ ā {K.š ā¢ _:š½}
ā¢ K ā¢ ((A)[1(š)])tau
3
.....wf.....
1. H : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K jā¶ H
4. phi : {H ā¢ _:š½}
5. A : {H.š ā¢ _}
6. u : {H, phi.š ā¢ _:A}
7. a0 : {H ā¢ _:(A)[0(š)][phi |ā¶ (u)[0(š)]]}
8. cA : H.š ā¢ CompOp(A)
9. ((phi)p)tau+ ā {K.š ā¢ _:š½}
ā¢ (comp cA [phi ā¢ā u] a0)tau ā {K ā¢ _:((A)[1(š)])tau}
4
.....wf.....
1. H : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K jā¶ H
4. phi : {H ā¢ _:š½}
5. A : {H.š ā¢ _}
6. u : {H, phi.š ā¢ _:A}
7. a0 : {H ā¢ _:(A)[0(š)][phi |ā¶ (u)[0(š)]]}
8. cA : H.š ā¢ CompOp(A)
9. ((phi)p)tau+ ā {K.š ā¢ _:š½}
ā¢ comp (cA)tau+ [(phi)tau ā¢ā (u)tau+] (a0)tau ā {K ā¢ _:((A)[1(š)])tau}
5
1. H : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K jā¶ H
4. phi : {H ā¢ _:š½}
5. A : {H.š ā¢ _}
6. u : {H, phi.š ā¢ _:A}
7. a0 : {H ā¢ _:(A)[0(š)][phi |ā¶ (u)[0(š)]]}
8. cA : H.š ā¢ CompOp(A)
9. ((phi)p)tau+ ā {K.š ā¢ _:š½}
ā¢ āI:fset(ā). āa:K(I).
(((comp cA [phi ā¢ā u] a0)tau I a) = (comp (cA)tau+ [(phi)tau ā¢ā (u)tau+] (a0)tau I a) ā ((A)[1(š)])tau(a))
Latex:
Latex:
1. H : CubicalSet\{j\}
2. K : CubicalSet\{j\}
3. tau : K j{}\mrightarrow{} H
4. phi : \{H \mvdash{} \_:\mBbbF{}\}
5. A : \{H.\mBbbI{} \mvdash{} \_\}
6. u : \{H, phi.\mBbbI{} \mvdash{} \_:A\}
7. a0 : \{H \mvdash{} \_:(A)[0(\mBbbI{})][phi |{}\mrightarrow{} (u)[0(\mBbbI{})]]\}
8. cA : H.\mBbbI{} \mvdash{} CompOp(A)
9. ((phi)p)tau+ \mmember{} \{K.\mBbbI{} \mvdash{} \_:\mBbbF{}\}
\mvdash{} (comp cA [phi \mvdash{}\mrightarrow{} u] a0)tau = comp (cA)tau+ [(phi)tau \mvdash{}\mrightarrow{} (u)tau+] (a0)tau
By
Latex:
BLemma `cubical-term-equal2`
Home
Index