Nuprl Lemma : context-map-ap-type
∀[I:fset(ℕ)]. ∀[Gamma:j⊢]. ∀[rho:Gamma(I)]. ∀[A:{Gamma ⊢ _}].  formal-cube(I) ⊢ (A)<rho>
Proof
Definitions occuring in Statement : 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
context-map: <rho>
, 
formal-cube: formal-cube(I)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
cubical_set: CubicalSet
, 
I_cube: A(I)
, 
I_set: A(I)
, 
formal-cube: formal-cube(I)
, 
Yoneda: Yoneda(I)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
context-map: <rho>
, 
ps-context-map: <rho>
Lemmas referenced : 
ps-context-map-ap-type, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cubical-type-sq-presheaf-type, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[Gamma:j\mvdash{}].  \mforall{}[rho:Gamma(I)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    formal-cube(I)  \mvdash{}  (A)<rho>
Date html generated:
2020_05_20-PM-01_49_32
Last ObjectModification:
2020_04_03-PM-08_27_01
Theory : cubical!type!theory
Home
Index