Nuprl Lemma : context-map-ap-type

[I:fset(ℕ)]. ∀[Gamma:j⊢]. ∀[rho:Gamma(I)]. ∀[A:{Gamma ⊢ _}].  formal-cube(I) ⊢ (A)<rho>


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} context-map: <rho> formal-cube: formal-cube(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-cat: CubeCat all: x:A. B[x] cubical_set: CubicalSet I_cube: A(I) I_set: A(I) formal-cube: formal-cube(I) Yoneda: Yoneda(I) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x context-map: <rho> ps-context-map: <rho>
Lemmas referenced :  ps-context-map-ap-type cube-cat_wf cat_ob_pair_lemma cubical-type-sq-presheaf-type cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[Gamma:j\mvdash{}].  \mforall{}[rho:Gamma(I)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    formal-cube(I)  \mvdash{}  (A)<rho>



Date html generated: 2020_05_20-PM-01_49_32
Last ObjectModification: 2020_04_03-PM-08_27_01

Theory : cubical!type!theory


Home Index