Step
*
of Lemma
contractible-to-prop_wf
No Annotations
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[c:{X ⊢ _:Contractible(A)}].
(contractible-to-prop(X;A;cA;c) ∈ {X ⊢ _:isProp(A)})
BY
{ (Intros
THEN Unhide
THEN ((Assert ((c)p)p ∈ {X.A.(A)p ⊢ _:((Contractible(A))p)p} BY
Auto)
THEN (Assert {X.A.(A)p ⊢ _:((Contractible(A))p)p} = {X.A.(A)p ⊢ _:Contractible(((A)p)p)} ∈ 𝕌{[i' | j']} BY
(EqCDA
THEN (InstLemmaIJ `csm-contractible-type` [⌜X⌝;⌜A⌝;⌜X.A⌝;⌜p⌝]⋅ THENA Auto)
THEN ApFunToHypEquands `Z' ⌜(Z)p⌝ {X.A.(A)p ⊢ _} (-1)⋅
THEN Auto
THEN InstLemmaIJ `csm-contractible-type` [⌜X.A⌝;⌜(A)p⌝;⌜X.A.(A)p⌝;⌜p⌝]⋅
THEN Auto))
)
THEN (InstLemmaIJ `contr-path_wf` [⌜X.A.(A)p⌝;⌜((A)p)p⌝;⌜((c)p)p⌝]⋅ THENA Auto)
THEN (InstLemmaIJ `contr-center_wf` [⌜X.A.(A)p⌝;⌜((A)p)p⌝;⌜((c)p)p⌝]⋅ THENA Auto)) }
1
1. X : CubicalSet{j}
2. A : {X ⊢ _}
3. cA : X +⊢ Compositon(A)
4. c : {X ⊢ _:Contractible(A)}
5. ((c)p)p ∈ {X.A.(A)p ⊢ _:((Contractible(A))p)p}
6. {X.A.(A)p ⊢ _:((Contractible(A))p)p} = {X.A.(A)p ⊢ _:Contractible(((A)p)p)} ∈ 𝕌{[i' | j']}
7. ∀[x:{X.A.(A)p ⊢ _:((A)p)p}]. (contr-path(((c)p)p;x) ∈ {X.A.(A)p ⊢ _:(Path_((A)p)p contr-center(((c)p)p) x)})
8. contr-center(((c)p)p) ∈ {X.A.(A)p ⊢ _:((A)p)p}
⊢ contractible-to-prop(X;A;cA;c) ∈ {X ⊢ _:isProp(A)}
Latex:
Latex:
No Annotations
\mforall{}[X:j\mvdash{}]. \mforall{}[A:\{X \mvdash{} \_\}]. \mforall{}[cA:X +\mvdash{} Compositon(A)]. \mforall{}[c:\{X \mvdash{} \_:Contractible(A)\}].
(contractible-to-prop(X;A;cA;c) \mmember{} \{X \mvdash{} \_:isProp(A)\})
By
Latex:
(Intros
THEN Unhide
THEN ((Assert ((c)p)p \mmember{} \{X.A.(A)p \mvdash{} \_:((Contractible(A))p)p\} BY
Auto)
THEN (Assert \{X.A.(A)p \mvdash{} \_:((Contractible(A))p)p\} = \{X.A.(A)p \mvdash{} \_:Contractible(((A)p)p)\} BY
(EqCDA
THEN (InstLemmaIJ `csm-contractible-type` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}X.A\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ApFunToHypEquands `Z' \mkleeneopen{}(Z)p\mkleeneclose{} \{X.A.(A)p \mvdash{} \_\} (-1)\mcdot{}
THEN Auto
THEN InstLemmaIJ `csm-contractible-type` [\mkleeneopen{}X.A\mkleeneclose{};\mkleeneopen{}(A)p\mkleeneclose{};\mkleeneopen{}X.A.(A)p\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{}]\mcdot{}
THEN Auto))
)
THEN (InstLemmaIJ `contr-path\_wf` [\mkleeneopen{}X.A.(A)p\mkleeneclose{};\mkleeneopen{}((A)p)p\mkleeneclose{};\mkleeneopen{}((c)p)p\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemmaIJ `contr-center\_wf` [\mkleeneopen{}X.A.(A)p\mkleeneclose{};\mkleeneopen{}((A)p)p\mkleeneclose{};\mkleeneopen{}((c)p)p\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index