Nuprl Lemma : contractible-to-prop_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[c:{X ⊢ _:Contractible(A)}].
  (contractible-to-prop(X;A;cA;c) ∈ {X ⊢ _:isProp(A)})


Proof




Definitions occuring in Statement :  contractible-to-prop: contractible-to-prop(X;A;cA;c) composition-structure: Gamma ⊢ Compositon(A) is-prop: isProp(A) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B squash: T prop: true: True is-prop: isProp(A) contractible-to-prop: contractible-to-prop(X;A;cA;c) guard: {T}
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-type_wf cc-fst_wf contractible-type_wf cubical-term_wf squash_wf true_wf csm-contractible-type contr-path_wf contr-center_wf composition-structure_wf cubical-type_wf cubical_set_wf cubical-lambda_wf cubical-pi_wf path-type_wf cc-snd_wf comp-path_wf csm-comp-structure_wf rev-path_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule equalityTransitivity equalitySymmetry lambdaEquality_alt imageElimination universeIsType applyLambdaEquality inhabitedIsType natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].  \mforall{}[c:\{X  \mvdash{}  \_:Contractible(A)\}].
    (contractible-to-prop(X;A;cA;c)  \mmember{}  \{X  \mvdash{}  \_:isProp(A)\})



Date html generated: 2020_05_20-PM-04_58_23
Last ObjectModification: 2020_04_13-PM-02_15_04

Theory : cubical!type!theory


Home Index