Nuprl Lemma : comp-path_wf
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ Compositon(A)]. ∀[a,b,c:{G ⊢ _:A}]. ∀[pth_a_b:{G ⊢ _:(Path_A a b)}].
∀[pth_b_c:{G ⊢ _:(Path_A b c)}].
  (pth_a_b + pth_b_c ∈ {G ⊢ _:(Path_A a c)})
Proof
Definitions occuring in Statement : 
comp-path: pth_a_b + pth_b_c
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
comp-path: pth_a_b + pth_b_c
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
guard: {T}
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
uimplies: b supposing a
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
same-cubical-term: X ⊢ u=v:A
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
csm-ap-term: (t)s
, 
face-zero: (i=0)
, 
cubical-refl: refl(a)
, 
cubicalpath-app: pth @ r
, 
path-eta: path-eta(pth)
, 
term-to-path: <>(a)
, 
cubical-app: app(w; u)
, 
cubical-lambda: (λb)
, 
cc-adjoin-cube: (v;u)
, 
csm+: tau+
, 
csm-comp: G o F
, 
compose: f o g
, 
pi2: snd(t)
, 
cubical-path-app: pth @ r
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
interval-1: 1(𝕀)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
path-eta_wf, 
path-type-subtype, 
cubical-refl_wf, 
comp_term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
face-or_wf, 
face-zero_wf, 
cc-snd_wf, 
face-one_wf, 
csm-ap-type_wf, 
cc-fst_wf_interval, 
csm-comp-structure_wf, 
istype-cubical-term, 
path-type_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-face-or, 
cc-fst_wf, 
subset-cubical-type, 
context-subset_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
context-subset-is-subset, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm+_wf, 
subtype_rel-equal, 
cubical-term_wf, 
p-csm+-type, 
csm-interval-type, 
subset-cubical-term, 
case-term_wf2, 
csm-face-zero, 
csm-face-one, 
same-cubical-type-trivial_1, 
context-subset-map, 
context-iterated-subset0, 
sub_cubical_set_transitivity, 
context-subset-swap, 
sub_cubical_set_functionality2, 
thin-context-subset, 
context-adjoin-subset2, 
sub_cubical_set_self, 
csm-case-term, 
same-cubical-term-by-cases, 
context-subset-term-subtype, 
empty-context-subset-lemma3', 
case-term-equal-right', 
face-and_wf, 
context-iterated-subset, 
cubical-path-app-1, 
csm-cubicalpath-app, 
csm-interval-1, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubicalpath-app_wf, 
pathtype_wf, 
csm-path-type-sub-pathtype, 
csm-pathtype, 
pathtype-subset, 
face-one-context-implies, 
case-term-equal-left', 
cubical-path-app-0, 
csm-interval-0, 
face-zero-context-implies, 
cubical-term-eqcd, 
context-subset-subtype-or, 
constrained-cubical-term_wf, 
subset-cubical-term2, 
context-iterated-subset1, 
context-subset-subtype-or2, 
cube_set_map_wf, 
cube_set_map_subtype3, 
csm-context-subset-subtype2, 
case-term_wf, 
interval-0_wf, 
empty-context-subset-lemma3, 
face-0_wf, 
face-zero-and-one, 
term-to-path-wf, 
csm-id-adjoin_wf, 
interval-1_wf, 
cc-snd-1, 
face-1-implies-subset, 
csm-id_wf, 
csm-ap-id-type, 
face-one-interval-1, 
face-term-implies-or2, 
face-term-implies_wf, 
subtype_rel_self, 
iff_weakening_equal, 
case-term-0', 
cubical-path-app_wf, 
face-zero-interval-1, 
cc-snd-0, 
face-zero-interval-0, 
face-term-implies-or1, 
case-term-1'
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
universeIsType, 
Error :memTop, 
independent_isectElimination, 
cumulativity, 
dependent_set_memberEquality_alt, 
equalityIstype, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
productElimination, 
applyLambdaEquality, 
hyp_replacement, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].  \mforall{}[a,b,c:\{G  \mvdash{}  \_:A\}].  \mforall{}[pth\_a$_{b}\mbackslash{}ff2\000C4:\{G  \mvdash{}  \_:(Path\_A  a  b)\}].
\mforall{}[pth\_b$_{c}$:\{G  \mvdash{}  \_:(Path\_A  b  c)\}].
    (pth\_a$_{b}$  +  pth\_b$_{c}$  \mmember{}  \{G  \mvdash{}  \_:(Path\_A  a  c)\})
Date html generated:
2020_05_20-PM-04_57_55
Last ObjectModification:
2020_04_20-AM-10_08_48
Theory : cubical!type!theory
Home
Index