Nuprl Lemma : comp-path_wf

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ Compositon(A)]. ∀[a,b,c:{G ⊢ _:A}]. ∀[pth_a_b:{G ⊢ _:(Path_A b)}].
[pth_b_c:{G ⊢ _:(Path_A c)}].
  (pth_a_b pth_b_c ∈ {G ⊢ _:(Path_A c)})


Proof




Definitions occuring in Statement :  comp-path: pth_a_b pth_b_c composition-structure: Gamma ⊢ Compositon(A) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] comp-path: pth_a_b pth_b_c member: t ∈ T subtype_rel: A ⊆B cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) guard: {T} composition-structure: Gamma ⊢ Compositon(A) uimplies: supposing a constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} same-cubical-term: X ⊢ u=v:A all: x:A. B[x] implies:  Q and: P ∧ Q cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) pi1: fst(t) csm-ap-term: (t)s face-zero: (i=0) cubical-refl: refl(a) cubicalpath-app: pth r path-eta: path-eta(pth) term-to-path: <>(a) cubical-app: app(w; u) cubical-lambda: b) cc-adjoin-cube: (v;u) csm+: tau+ csm-comp: F compose: g pi2: snd(t) cubical-path-app: pth r prop: squash: T true: True interval-1: 1(𝕀) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  path-eta_wf path-type-subtype cubical-refl_wf comp_term_wf cube-context-adjoin_wf interval-type_wf face-or_wf face-zero_wf cc-snd_wf face-one_wf csm-ap-type_wf cc-fst_wf_interval csm-comp-structure_wf istype-cubical-term path-type_wf composition-structure_wf cubical-type_wf cubical_set_wf csm-face-or cc-fst_wf subset-cubical-type context-subset_wf csm-ap-term_wf face-type_wf csm-face-type context-subset-is-subset cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm+_wf subtype_rel-equal cubical-term_wf p-csm+-type csm-interval-type subset-cubical-term case-term_wf2 csm-face-zero csm-face-one same-cubical-type-trivial_1 context-subset-map context-iterated-subset0 sub_cubical_set_transitivity context-subset-swap sub_cubical_set_functionality2 thin-context-subset context-adjoin-subset2 sub_cubical_set_self csm-case-term same-cubical-term-by-cases context-subset-term-subtype empty-context-subset-lemma3' case-term-equal-right' face-and_wf context-iterated-subset cubical-path-app-1 csm-cubicalpath-app csm-interval-1 equal_wf squash_wf true_wf istype-universe cubicalpath-app_wf pathtype_wf csm-path-type-sub-pathtype csm-pathtype pathtype-subset face-one-context-implies case-term-equal-left' cubical-path-app-0 csm-interval-0 face-zero-context-implies cubical-term-eqcd context-subset-subtype-or constrained-cubical-term_wf subset-cubical-term2 context-iterated-subset1 context-subset-subtype-or2 cube_set_map_wf cube_set_map_subtype3 csm-context-subset-subtype2 case-term_wf interval-0_wf empty-context-subset-lemma3 face-0_wf face-zero-and-one term-to-path-wf csm-id-adjoin_wf interval-1_wf cc-snd-1 face-1-implies-subset csm-id_wf csm-ap-id-type face-one-interval-1 face-term-implies-or2 face-term-implies_wf subtype_rel_self iff_weakening_equal case-term-0' cubical-path-app_wf face-zero-interval-1 cc-snd-0 face-zero-interval-0 face-term-implies-or1 case-term-1'
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality applyEquality hypothesis sqequalRule instantiate equalityTransitivity equalitySymmetry lambdaEquality_alt setElimination rename inhabitedIsType universeIsType Error :memTop,  independent_isectElimination cumulativity dependent_set_memberEquality_alt equalityIstype lambdaFormation_alt dependent_functionElimination independent_functionElimination independent_pairFormation productElimination applyLambdaEquality hyp_replacement imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  Compositon(A)].  \mforall{}[a,b,c:\{G  \mvdash{}  \_:A\}].  \mforall{}[pth\_a$_{b}\mbackslash{}ff2\000C4:\{G  \mvdash{}  \_:(Path\_A  a  b)\}].
\mforall{}[pth\_b$_{c}$:\{G  \mvdash{}  \_:(Path\_A  b  c)\}].
    (pth\_a$_{b}$  +  pth\_b$_{c}$  \mmember{}  \{G  \mvdash{}  \_:(Path\_A  a  c)\})



Date html generated: 2020_05_20-PM-04_57_55
Last ObjectModification: 2020_04_20-AM-10_08_48

Theory : cubical!type!theory


Home Index