Nuprl Lemma : face-zero-interval-1
ā[H:jā¢]. ((1(š)=0) = 0(š½) ā {H ā¢ _:š½})
Proof
Definitions occuring in Statement :
face-zero: (i=0)
,
face-0: 0(š½)
,
face-type: š½
,
interval-1: 1(š)
,
cubical-term: {X ā¢ _:A}
,
cubical_set: CubicalSet
,
uall: ā[x:A]. B[x]
,
equal: s = t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
face-0: 0(š½)
,
interval-1: 1(š)
,
face-zero: (i=0)
,
cubical-term-at: u(a)
,
dM-to-FL: dM-to-FL(I;z)
,
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
,
lattice-fset-join: \/(s)
,
reduce: reduce(f;k;as)
,
list_ind: list_ind,
fset-image: f"(s)
,
f-union: f-union(domeq;rngeq;s;x.g[x])
,
list_accum: list_accum,
dm-neg: Ā¬(x)
,
dM1: 1
,
lattice-1: 1
,
record-select: r.x
,
dM: dM(I)
,
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
,
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
,
record-update: r[x := v]
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
bfalse: ff
,
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
,
free-dist-lattice: free-dist-lattice(T; eq)
,
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice,
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
,
btrue: tt
,
fset-singleton: {x}
,
cons: [a / b]
,
nil: []
,
it: ā
,
fset-union: x ā y
,
l-union: as ā bs
,
insert: insert(a;L)
,
eval_list: eval_list(t)
,
deq-member: x āb L
,
lattice-join: a āØ b
,
opposite-lattice: opposite-lattice(L)
,
so_lambda: Ī»2x y.t[x; y]
,
lattice-meet: a ā§ b
,
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
,
fset-minimals: fset-minimals(x,y.less[x; y]; s)
,
fset-filter: {x ā s | P[x]}
,
filter: filter(P;l)
,
lattice-fset-meet: /\(s)
,
empty-fset: {}
,
lattice-0: 0
,
face_lattice: face_lattice(I)
,
face-lattice: face-lattice(T;eq)
,
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
,
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
,
member: t ā T
,
subtype_rel: A ār B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
lattice-point: Point(l)
,
cubical-type-at: A(a)
,
pi1: fst(t)
,
face-type: š½
,
constant-cubical-type: (X)
,
I_cube: A(I)
,
functor-ob: ob(F)
,
face-presheaf: š½
,
uimplies: b supposing a
Lemmas referenced :
lattice-0_wf,
face_lattice_wf,
subtype_rel_self,
cubical-type-at_wf_face-type,
I_cube_wf,
fset_wf,
nat_wf,
cubical-term-equal,
face-type_wf,
face-zero_wf,
interval-1_wf,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
functionExtensionality,
sqequalRule,
hypothesis,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
applyEquality,
lambdaEquality_alt,
setElimination,
rename,
inhabitedIsType,
equalityTransitivity,
equalitySymmetry,
Error :memTop,
independent_isectElimination,
universeIsType,
instantiate
Latex:
\mforall{}[H:j\mvdash{}]. ((1(\mBbbI{})=0) = 0(\mBbbF{}))
Date html generated:
2020_05_20-PM-02_43_55
Last ObjectModification:
2020_04_04-PM-04_58_02
Theory : cubical!type!theory
Home
Index