Nuprl Lemma : face-zero-interval-1

āˆ€[H:jāŠ¢]. ((1(š•€)=0) 0(š”½) āˆˆ {H āŠ¢ _:š”½})


Proof




Definitions occuring in Statement :  face-zero: (i=0) face-0: 0(š”½) face-type: š”½ interval-1: 1(š•€) cubical-term: {X āŠ¢ _:A} cubical_set: CubicalSet uall: āˆ€[x:A]. B[x] equal: t āˆˆ T
Definitions unfolded in proof :  uall: āˆ€[x:A]. B[x] face-0: 0(š”½) interval-1: 1(š•€) face-zero: (i=0) cubical-term-at: u(a) dM-to-FL: dM-to-FL(I;z) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dm-neg: Ā¬(x) dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fset-singleton: {x} cons: [a b] nil: [] it: ā‹… fset-union: x ā‹ƒ y l-union: as ā‹ƒ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x āˆˆb L lattice-join: a āˆØ b opposite-lattice: opposite-lattice(L) so_lambda: Ī»2y.t[x; y] lattice-meet: a āˆ§ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x āˆˆ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) empty-fset: {} lattice-0: 0 face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) member: t āˆˆ T subtype_rel: A āŠ†B bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) cubical-type-at: A(a) pi1: fst(t) face-type: š”½ constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: š”½ uimplies: supposing a
Lemmas referenced :  lattice-0_wf face_lattice_wf subtype_rel_self cubical-type-at_wf_face-type I_cube_wf fset_wf nat_wf cubical-term-equal face-type_wf face-zero_wf interval-1_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionExtensionality sqequalRule hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry Error :memTop,  independent_isectElimination universeIsType instantiate

Latex:
\mforall{}[H:j\mvdash{}].  ((1(\mBbbI{})=0)  =  0(\mBbbF{}))



Date html generated: 2020_05_20-PM-02_43_55
Last ObjectModification: 2020_04_04-PM-04_58_02

Theory : cubical!type!theory


Home Index