Nuprl Lemma : empty-context-subset-lemma3'
∀[Gamma:j⊢]. ∀[i:{Gamma ⊢ _:𝕀}]. ∀[A,x,y:Top].  (x = y ∈ {Gamma, (i=0), (i=1) ⊢ _:A})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-zero: (i=0)
, 
face-one: (i=1)
, 
interval-type: 𝕀
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
cubical-term: {X ⊢ _:A}
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
interval-presheaf: 𝕀
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
I_cube_pair_redex_lemma, 
face-zero-eq-1, 
face-one-eq-1, 
interval-type-at, 
dM-0-not-1, 
I_cube_wf, 
context-subset_wf, 
face-zero_wf, 
face-one_wf, 
subset-cubical-term, 
context-subset-is-subset, 
interval-type_wf, 
fset_wf, 
nat_wf, 
face-lattice-0-not-1, 
names-hom_wf, 
istype-top, 
cubical-term_wf, 
cubical_set_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
functionExtensionality, 
sqequalHypSubstitution, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
Error :memTop, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
lambdaFormation_alt, 
universeIsType, 
inhabitedIsType, 
instantiate, 
functionIsType, 
equalityIstype
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[i:\{Gamma  \mvdash{}  \_:\mBbbI{}\}].  \mforall{}[A,x,y:Top].    (x  =  y)
Date html generated:
2020_05_20-PM-04_13_11
Last ObjectModification:
2020_04_10-AM-04_39_34
Theory : cubical!type!theory
Home
Index