Nuprl Lemma : empty-context-subset-lemma3'

[Gamma:j⊢]. ∀[i:{Gamma ⊢ _:𝕀}]. ∀[A,x,y:Top].  (x y ∈ {Gamma, (i=0), (i=1) ⊢ _:A})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-zero: (i=0) face-one: (i=1) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-term: {X ⊢ _:A} context-subset: Gamma, phi all: x:A. B[x] member: t ∈ T uimplies: supposing a interval-presheaf: 𝕀 not: ¬A implies:  Q false: False subtype_rel: A ⊆B
Lemmas referenced :  I_cube_pair_redex_lemma face-zero-eq-1 face-one-eq-1 interval-type-at dM-0-not-1 I_cube_wf context-subset_wf face-zero_wf face-one_wf subset-cubical-term context-subset-is-subset interval-type_wf fset_wf nat_wf face-lattice-0-not-1 names-hom_wf istype-top cubical-term_wf cubical_set_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut dependent_set_memberEquality_alt functionExtensionality sqequalHypSubstitution introduction extract_by_obid dependent_functionElimination thin Error :memTop,  hypothesis sqequalRule setElimination rename isectElimination hypothesisEquality independent_isectElimination because_Cache equalityTransitivity equalitySymmetry independent_functionElimination voidElimination applyEquality lambdaFormation_alt universeIsType inhabitedIsType instantiate functionIsType equalityIstype

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[i:\{Gamma  \mvdash{}  \_:\mBbbI{}\}].  \mforall{}[A,x,y:Top].    (x  =  y)



Date html generated: 2020_05_20-PM-04_13_11
Last ObjectModification: 2020_04_10-AM-04_39_34

Theory : cubical!type!theory


Home Index