Nuprl Lemma : context-subset-subtype-or

[Gamma:j⊢]. ∀[phi1,phi2:{Gamma ⊢ _:𝔽}].  ({Gamma, (phi1 ∨ phi2) ⊢ _} ⊆{Gamma, phi1 ⊢ _})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-or: (a ∨ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  context-subset-subtype face-or_wf face-or-eq-1 cubical-term-at_wf face-type_wf subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination lambdaFormation_alt because_Cache dependent_functionElimination productElimination independent_functionElimination inlFormation_alt equalityIstype inhabitedIsType equalityTransitivity equalitySymmetry applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity isectEquality universeIsType setElimination rename

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi1,phi2:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    (\{Gamma,  (phi1  \mvee{}  phi2)  \mvdash{}  \_\}  \msubseteq{}r  \{Gamma,  phi1  \mvdash{}  \_\})



Date html generated: 2020_05_20-PM-02_52_56
Last ObjectModification: 2020_04_06-AM-10_32_11

Theory : cubical!type!theory


Home Index