Nuprl Lemma : face-zero-context-implies

[X:j⊢]. ∀[i:{X ⊢ _:𝕀}].  X, (i=0) ⊢ i=0(𝕀):𝕀


Proof




Definitions occuring in Statement :  same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi face-zero: (i=0) interval-0: 0(𝕀) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T same-cubical-term: X ⊢ u=v:A subtype_rel: A ⊆B uimplies: supposing a context-subset: Gamma, phi all: x:A. B[x] face-zero: (i=0) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt uiff: uiff(P;Q) and: P ∧ Q interval-0: 0(𝕀) implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra guard: {T} squash: T dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-1: 1 fset-singleton: {x} cons: [a b] fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) true: True
Lemmas referenced :  I_cube_wf context-subset_wf face-zero_wf fset_wf nat_wf cubical-term-equal interval-type_wf subset-cubical-term context-subset-is-subset cubical-term_wf cubical_set_wf I_cube_pair_redex_lemma dM-to-FL-eq-1 dm-neg_wf names_wf names-deq_wf subtype_rel_self lattice-point_wf free-DeMorgan-lattice_wf cubical-term-at_wf interval-type-at subtype_rel-equal dM_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf lattice-1_wf squash_wf true_wf istype-universe dM-neg-properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry axiomEquality universeIsType instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination Error :memTop,  setElimination rename productElimination independent_functionElimination lambdaFormation_alt equalityIstype lambdaEquality_alt productEquality cumulativity isectEquality applyLambdaEquality hyp_replacement imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[i:\{X  \mvdash{}  \_:\mBbbI{}\}].    X,  (i=0)  \mvdash{}  i=0(\mBbbI{}):\mBbbI{}



Date html generated: 2020_05_20-PM-03_00_38
Last ObjectModification: 2020_04_04-PM-05_16_01

Theory : cubical!type!theory


Home Index