Nuprl Lemma : term-to-path-wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u,v:{X ⊢ _:A}].
  ∀a:{X.𝕀 ⊢ _:(A)p}. (<>(a) ∈ {X ⊢ _:(Path_A v)}) supposing (X ⊢ (a)[0(𝕀)]=u:A and X ⊢ (a)[1(𝕀)]=v:A)


Proof




Definitions occuring in Statement :  term-to-path: <>(a) path-type: (Path_A b) same-cubical-term: X ⊢ u=v:A interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  term-to-path_wf subset-cubical-term2 sub_cubical_set_self path-type_wf csm-ap-term_wf cube-context-adjoin_wf interval-type_wf csm-ap-type_wf cc-fst_wf csm-id-adjoin_wf-interval-0 csm-id-adjoin_wf-interval-1 same-cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm_id_adjoin_fst_type_lemma csm-ap-id-type cubical-term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis applyEquality because_Cache independent_isectElimination instantiate sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType Error :memTop,  isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaEquality_alt functionIsTypeImplies

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u,v:\{X  \mvdash{}  \_:A\}].
    \mforall{}a:\{X.\mBbbI{}  \mvdash{}  \_:(A)p\}
        (<>(a)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  u  v)\})  supposing  (X  \mvdash{}  (a)[0(\mBbbI{})]=u:A  and  X  \mvdash{}  (a)[1(\mBbbI{})]=v:A)



Date html generated: 2020_05_20-PM-03_19_38
Last ObjectModification: 2020_04_06-PM-06_35_53

Theory : cubical!type!theory


Home Index