Nuprl Lemma : context-iterated-subset1
∀[X:j⊢]. ∀[xx,yy:{X ⊢ _:𝔽}].  sub_cubical_set{j:l}(X, xx, yy; X, yy)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
sub_cubical_set: Y ⊆ X
Lemmas referenced : 
sub_cubical_set_transitivity, 
context-subset_wf, 
face-and_wf, 
subset-cubical-term, 
context-subset-is-subset, 
face-type_wf, 
context-iterated-subset, 
face-term-implies-subset, 
face-term-and-implies1, 
cubical-term_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
instantiate, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[xx,yy:\{X  \mvdash{}  \_:\mBbbF{}\}].    sub\_cubical\_set\{j:l\}(X,  xx,  yy;  X,  yy)
Date html generated:
2020_05_20-PM-02_56_21
Last ObjectModification:
2020_04_04-PM-05_11_16
Theory : cubical!type!theory
Home
Index