Nuprl Lemma : cubical-refl_wf
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (refl(a) ∈ {X ⊢ _:(Path_A a a)})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
path-type: (Path_A a b)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-refl: refl(a)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
Lemmas referenced : 
term-to-path_wf, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cc-fst_wf, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
squash_wf, 
true_wf, 
path-type_wf, 
csm_id_adjoin_fst_term_lemma, 
csm-ap-id-term
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
instantiate, 
applyEquality, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
imageElimination, 
Error :memTop, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    (refl(a)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  a  a)\})
Date html generated:
2020_05_20-PM-03_20_58
Last ObjectModification:
2020_04_06-PM-06_37_54
Theory : cubical!type!theory
Home
Index