Nuprl Lemma : cubical-refl_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  (refl(a) ∈ {X ⊢ _:(Path_A a)})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) path-type: (Path_A b) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-refl: refl(a) all: x:A. B[x] subtype_rel: A ⊆B squash: T prop: true: True
Lemmas referenced :  term-to-path_wf csm-ap-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cc-fst_wf cubical-term_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf squash_wf true_wf path-type_wf csm_id_adjoin_fst_term_lemma csm-ap-id-term
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination instantiate applyEquality hypothesis because_Cache equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType imageElimination Error :memTop,  natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    (refl(a)  \mmember{}  \{X  \mvdash{}  \_:(Path\_A  a  a)\})



Date html generated: 2020_05_20-PM-03_20_58
Last ObjectModification: 2020_04_06-PM-06_37_54

Theory : cubical!type!theory


Home Index