Nuprl Lemma : face-one-context-implies

[X:j⊢]. ∀[i:{X ⊢ _:𝕀}].  X, (i=1) ⊢ i=1(𝕀):𝕀


Proof




Definitions occuring in Statement :  same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi face-one: (i=1) interval-1: 1(𝕀) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T same-cubical-term: X ⊢ u=v:A subtype_rel: A ⊆B uimplies: supposing a context-subset: Gamma, phi all: x:A. B[x] face-one: (i=1) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} so_apply: x[s] uiff: uiff(P;Q) interval-1: 1(𝕀) dM1: 1 lattice-1: 1 fset-singleton: {x} cons: [a b]
Lemmas referenced :  I_cube_wf context-subset_wf face-one_wf fset_wf nat_wf cubical-term-equal interval-type_wf subset-cubical-term context-subset-is-subset cubical-term_wf cubical_set_wf I_cube_pair_redex_lemma dM-to-FL-eq-1 subtype_rel_self lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry axiomEquality universeIsType instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination Error :memTop,  setElimination rename lambdaEquality_alt productEquality cumulativity isectEquality productElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[i:\{X  \mvdash{}  \_:\mBbbI{}\}].    X,  (i=1)  \mvdash{}  i=1(\mBbbI{}):\mBbbI{}



Date html generated: 2020_05_20-PM-03_00_24
Last ObjectModification: 2020_04_04-PM-05_15_24

Theory : cubical!type!theory


Home Index