Nuprl Lemma : case-term-equal-left'
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}]. ∀[v:Top]. ∀[x:{Gamma, phi ⊢ _:A}].
  Gamma, phi ⊢ (u ∨ v)=x:A supposing x = u ∈ {Gamma, phi ⊢ _:A}
Proof
Definitions occuring in Statement : 
case-term: (u ∨ v)
, 
same-cubical-term: X ⊢ u=v:A
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
same-cubical-term: X ⊢ u=v:A
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
case-term-equal-left, 
istype-top, 
cubical-term_wf, 
context-subset_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
inhabitedIsType, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].  \mforall{}[v:Top].
\mforall{}[x:\{Gamma,  phi  \mvdash{}  \_:A\}].
    Gamma,  phi  \mvdash{}  (u  \mvee{}  v)=x:A  supposing  x  =  u
Date html generated:
2020_05_20-PM-03_11_18
Last ObjectModification:
2020_04_07-PM-00_58_42
Theory : cubical!type!theory
Home
Index