Nuprl Lemma : contr-center_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[c:{X ⊢ _:Contractible(A)}].  (contr-center(c) ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  contr-center: contr-center(c) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T contractible-type: Contractible(A) contr-center: contr-center(c) subtype_rel: A ⊆B
Lemmas referenced :  cubical-fst_wf cubical-pi_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf cubical-term_wf contractible-type_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution sqequalRule extract_by_obid isectElimination thin hypothesisEquality instantiate applyEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[c:\{X  \mvdash{}  \_:Contractible(A)\}].    (contr-center(c)  \mmember{}  \{X  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-03_23_03
Last ObjectModification: 2020_04_06-PM-06_39_52

Theory : cubical!type!theory


Home Index