Nuprl Lemma : csm-adjoin-ap

[sigma,u,I,del:Top].  (((sigma;u))del ((sigma)del;(u)del))


Proof




Definitions occuring in Statement :  csm-adjoin: (s;u) cc-adjoin-cube: (v;u) csm-ap: (s)x uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  csm-ap: (s)x pscm-ap: (s)x csm-adjoin: (s;u) pscm-adjoin: (s;u) cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u)
Lemmas referenced :  pscm-adjoin-ap
Rules used in proof :  cut introduction extract_by_obid sqequalRule sqequalReflexivity sqequalSubstitution sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[sigma,u,I,del:Top].    (((sigma;u))del  \msim{}  ((sigma)del;(u)del))



Date html generated: 2018_05_23-AM-08_50_17
Last ObjectModification: 2018_05_20-PM-05_59_37

Theory : cubical!type!theory


Home Index