Nuprl Lemma : csm-ap-comp-type-sq2

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[s1,s2:Top].  (((A)s2)s1 (A)s2 s1)


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cubical_set: CubicalSet uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-comp: F pscm-comp: F
Lemmas referenced :  pscm-ap-comp-type-sq2 cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[s1,s2:Top].    (((A)s2)s1  \msim{}  (A)s2  o  s1)



Date html generated: 2020_05_20-PM-01_50_13
Last ObjectModification: 2020_04_03-PM-08_27_24

Theory : cubical!type!theory


Home Index