Step
*
of Lemma
csm-comp-structure-id
No Annotations
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)]. ∀[tau:Gamma j⟶ Gamma].
(cA)tau = cA ∈ Gamma ⊢ Compositon(A) supposing tau = 1(Gamma) ∈ Gamma j⟶ Gamma
BY
{ (Intros
THEN Unhide
THEN StrengthenEquation (-1)
THEN (Assert (cA)tau = (cA)1(Gamma) ∈ Gamma ⊢ Compositon(A) BY
(EquationFromHyp (-1)
THEN (InferEqualTypeGen THEN Auto)
THEN EqCDA
THEN RepeatFor 2 (D -1)
THEN RWO "-1" 0
THEN Auto))
THEN (Enough to prove (cA)1(Gamma) = cA ∈ Gamma ⊢ Compositon(A)
Because Eq)
THEN All Thin) }
1
1. Gamma : CubicalSet{j}
2. A : {Gamma ⊢ _}
3. cA : Gamma ⊢ Compositon(A)
⊢ (cA)1(Gamma) = cA ∈ Gamma ⊢ Compositon(A)
Latex:
Latex:
No Annotations
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. \mforall{}[cA:Gamma \mvdash{} Compositon(A)]. \mforall{}[tau:Gamma j{}\mrightarrow{} Gamma].
(cA)tau = cA supposing tau = 1(Gamma)
By
Latex:
(Intros
THEN Unhide
THEN StrengthenEquation (-1)
THEN (Assert (cA)tau = (cA)1(Gamma) BY
(EquationFromHyp (-1)
THEN (InferEqualTypeGen THEN Auto)
THEN EqCDA
THEN RepeatFor 2 (D -1)
THEN RWO "-1" 0
THEN Auto))
THEN (Enough to prove (cA)1(Gamma) = cA
Because Eq)
THEN All Thin)
Home
Index