Nuprl Lemma : csm-comp-structure-id

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)]. ∀[tau:Gamma j⟶ Gamma].
  (cA)tau cA ∈ Gamma ⊢ Compositon(A) supposing tau 1(Gamma) ∈ Gamma j⟶ Gamma


Proof




Definitions occuring in Statement :  csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) cubical-type: {X ⊢ _} csm-id: 1(X) cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q member: t ∈ T squash: T true: True csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F compose: g subtype_rel: A ⊆B prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) csm-id-adjoin: [u] csm-id: 1(X)
Lemmas referenced :  composition-structure_wf csm-comp-structure_wf csm-id_wf cube_set_map_wf cubical-type_wf cubical_set_wf csm-ap-id-type equal_wf squash_wf true_wf istype-universe csm-ap-type_wf subtype_rel_self iff_weakening_equal constrained-cubical-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 csm-ap-term_wf context-subset_wf thin-context-subset-adjoin cubical-term_wf csm-context-subset-subtype3 face-type_wf uniform-comp-function_wf csm-id-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut dependent_set_memberEquality_alt hypothesis independent_pairFormation equalityTransitivity equalitySymmetry sqequalRule productIsType equalityIstype inhabitedIsType hypothesisEquality applyLambdaEquality thin applyEquality lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination because_Cache setElimination rename productElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement universeIsType instantiate universeEquality independent_isectElimination independent_functionElimination functionExtensionality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].  \mforall{}[tau:Gamma  j{}\mrightarrow{}  Gamma].
    (cA)tau  =  cA  supposing  tau  =  1(Gamma)



Date html generated: 2020_05_20-PM-04_36_04
Last ObjectModification: 2020_04_17-AM-01_04_21

Theory : cubical!type!theory


Home Index