Nuprl Lemma : csm-id-comp

[A,B:j⊢]. ∀[sigma:A j⟶ B].  ((sigma 1(A) sigma ∈ j⟶ B) ∧ (1(B) sigma sigma ∈ j⟶ B))


Proof




Definitions occuring in Statement :  csm-id: 1(X) csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B csm-comp: F pscm-comp: F csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  pscm-id-comp cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[A,B:j\mvdash{}].  \mforall{}[sigma:A  j{}\mrightarrow{}  B].    ((sigma  o  1(A)  =  sigma)  \mwedge{}  (1(B)  o  sigma  =  sigma))



Date html generated: 2020_05_20-PM-01_42_02
Last ObjectModification: 2020_04_03-PM-03_34_05

Theory : cubical!type!theory


Home Index